
Odyssey Help - Table of Contents
Copyright © 1994, Skyro Software Ltd.
Please select a topic from the list below.

Introduction:
Introducing Odyssey
Introducing Communications

Odyssey Configuration

Using Odyssey Windows:
Odyssey and the Windows MDI interface.
The Terminal window
The Dialing Directory
The Text editor
The Directory Viewer
The Bitmap viewer
The FAX server
The Archive Viewer

Using Other Odyssey Features:
File Transfer
Terminal Emulation
Text Logging
Using Scripts
Host mode
Chat mode
Playback mode
Command line recall
Event Logging
Keyboard Remapping
Script Compiler
Alternative Configurations

Odyssey Menus

Reference:
Script Language Tutorial
Script Language Commands
Cabling Requirements

Glossary

Acknowledgments, Trademarks etc

Odyssey Help
Introduction
Select one of the introductory topics listed below:

Introducing Odyssey
Introducing Communications

Introduction
Introducing Odyssey
This introduction will go on to briefly introduce most of the features of Odyssey, however if you are a
complete beginner to comms then you may want to read the next section "Introduction to
Communications" before returning here. This will help you to better understand some of the terms used.

Odyssey is a comprehensive computer data communications package for the IBM AT and true
compatibles running Microsoft Windows™ 3.1 or later, which as well as providing all the standard features
of a powerful comms package, will also allow error free communications without requiring an expensive
error correcting modem. The inclusion of MNP in Odyssey will allow noise free communications using an
ordinary inexpensive modem, even set to its highest speed, with any other system, provided that it also
supports MNP or V.42, whether in software like Odyssey, or in hardware. Although several other
packages have now copied the Odyssey trick of implementing MNP in software, Odyssey was the first to
do so, and in our (naturally unbiased) opinion, is still the best!

As in any Windows application, program functions in Odyssey accessed by means of pull down menus,
however the software also provides shortcuts for the most common commands, through through the use
of hotkeys and toolbar buttons. Full control over communication and file transfer settings is provided by
means of simple configuration dialogs, and context sensitive help is available at all times. The
configuration dialogs may also control default directories, colors used by terminal emulators etc.

Among the many features provided are:-

· Text capture to a disk file and/or printer (called text logging in Odyssey).

· Host mode with two levels of password protection allowing remote systems to dial into your PC.

· Chat mode for direct two-way conversations.

· User defined macros.

· Keyboard remapping.

· A Command Line Recall facility, to save typing when online.

· A scrollback feature which allows you to "look back in time" at text which has scrolled off the terminal
display (called the "Review editor") in Odyssey.

· A playback mode which allows you to replay, offline, recorded portions of an online session.

· Event logging, which records details of calls, such as service name, date, time and duration. Other
transactions recorded are file transfers, fax transmission and reception, script events, and so on.

· A dialing directory which allows an unlimited number of entries, and which supports both queued
dialing of tagged entries, and automatic redial. You can see statistics on the numbers of calls to a
particular service, see when you last called that service, how long you were on for, and so on.

· Several file transfer protocols built in, including ASCII, Xmodem, Ymodem,SuperKermit, Zmodem
and Compuserve B+. Zmodem and Compuserve B+ are especially powerful and provide facilities for
"no hands" automatic download of files. Both also provide the ability to resume a file transfer which
was interrupted by a line drop or power failure; packages which do not offer this feature require you to
start the download again from the beginning.

· A multi-window ASCII text editor, used for preparing messages offline, and also used to manipulate
the contents of the scrollback buffer. Text editing can be performed using CUA commands, or can use

Wordstar™ compatible commands for those more used to the editor provided in Odyssey for DOS.
The text editor in Windows Odyssey can handle files of any size - in particular, it does not have the
64k file size limits of the DOS version.

· A comprehensive Pascal-like script language, which among other things allows you to automate the
dial and log on procedure for any service. This includes a special "learn" feature, which makes the
script language facility more accessible to those with little or no prior experience of programming, and
a script compiler utility which allows the use of precompiled scripts for faster loading or greater
security (note that use of the compiler is optional).

· Accurate emulations of several popular terminal types, including TTY, VT320, VT100, VT52, ANSI,
DG200 and Viewdata (PRESTEL). Support for further terminal emulations is planned. Although not
provided as a separate emulation, note that VT220 is also supported as a subset of VT320.

· FAX modem support, including the ability to send, receive, view, and print FAX documents. You can
send text, PCX, and TIFF files as FAXes, and you can export a FAX as PCX or TIFF. Both normal and
high resolution FAX formats are supported. The Odyssey FAX server works with any modem which
conforms to the EIA Class I or Class II specifications.

Minimum hardware requirements are a 386 based IBM PC or compatible with monochrome display,
running Windows 3.1 or later in 386 enhanced mode, with 2Mb of random access memory, a hard disk
with at least 3Mb free space, and (if dialup communications is required) an asynchronous modem either
attached by cable to a serial port, or on an internal card. However, the ideal machine for Odyssey will
have a hard disk with several megabytes of free space (giving room for file transfer downloads), a
"Windows Accelerator" type SuperVGA card (for faster scrolling during terminal emulation), and a fast
modem with V42bis error correction and data compression.

The serial cable used for connection of external modems to PC/AT or PS/2 machines is normally a simple
ribbon cable. See cabling requirements.

Introduction
Introducing Communications
This help chapter is intended as an introduction to the subject of computer data communications for the
first time user. It includes descriptions of the hardware and software required to allow computers to
communicate and exchange data with each other, and information on how to make use of this equipment.
It will also introduce some of the terms and ideas which will be discussed in the other chapters of this help
document. Although not intended to be a definitive guide to data communications, it should provide the
novice with a basic grounding in this exciting and expanding sector of the computing world.

Computer data communications, normally just abbreviated to 'comms', is the exchange of information
between computers which are linked together, either directly by cable, or by means of devices called
modems which allow computers to communicate using the public telephone network. Data is exchanged
in serial form, a concept which will be explained shortly.

This introduction has been broken down into several subtopics. Please choose from the list below.
Alternatively, you may select the "Bits and Bytes" topic, and then follow the browse sequence.

Bits and Bytes
Serial and Parallel
The ASCII Code Standard
Baud Rates
Synchronous vs Asynchronous
Parity
Flow Control
Modems
Hayes Compatibility
Remote Dialed Systems
Direct Connections
File Transfer

Introducing Communications
Bits and Bytes
The smallest item of information that can be transmitted at one time is one character (the jargon term is
'one byte'). A byte is a computer code made up of eight binary digits (called 'bits' for short) - a bit can be
either a zero or a one. Bytes are transmitted to your modem which is connected by cable to the rear of
your PC, or mounted on an internal card (whether the modem is internal or external makes no difference
to how the computer sees it). Your modem transmits that byte to a remote modem, which passes it to its
local computer.

Introducing Communications
Serial and Parallel
The connection between your computer and an attached device can be either 'serial' or 'parallel'. In a
parallel connection, the byte would be fetched from the computer memory and transmitted in one go, with
each of the eight bits going out on a separate wire, the presence or not of a voltage on each wire being
used to represent whether that bit is a one or a zero. In a serial connection the procedure is much the
same, except that only a single wire is used, so the bits must be transmitted one at a time in single file - in
other words they are transmitted in serial. Parallel connections are usually faster, but begin to suffer
problems as the distance between the two communicating devices increases - problems such as signals
arriving at different times on each wire due to slight differences in their resistances. Serial connections are
slower, but are simpler and more reliable over longer distances. This discussion will concentrate on serial
connections.

You quite probably know that a serial cable actually uses more than one wire, however the other wires are
used for other things. For example, a second wire is used to receive bits, two further wires are used to
indicate when each side is ready to receive, another wires provides a reference or "ground", and so on. A
standard PC modem cable can get by with about eight wires.

In order for a computer to use a serial connection, something must take on the work of converting parallel
data bytes inside the PC into serial form, and vice versa when receiving. While your 80x86 CPU is quite
capable of doing this job, it would be a waste of its resources, so instead the IBM PC makes use of a
specialised chip called a UART (Universal Asynchronous Receiver/ Transmitter) which handles this job of
assembling bits into bytes, and vice versa as its sole purpose in life. You will have noticed the word
"asynchronous" pop in there, and we will return to that later.

Introducing Communications
The ASCII Code Standard
Let us leave modems for a moment, and think instead of a problem which is general in communications.

When you tell your computer to print a document from your word processor, you may never have thought
about how the computer actually tells the printer what to print. The computer does not (normally) store a
picture of each character in memory, instead it represents each character with a code, for example it
might use the number 65 to represent the letter 'A'. So, when the computer wants the printer to print the
letter 'A', it passes this instruction as a single byte, which contains the value 65, the code for 'A'.

Of course, for this to work, it is important that both computer and printer agree on the codes used to
represent letters, otherwise the result will be total gibberish! This problem was apparent from the early
days of computing, and so an official standard was born - the ASCII standard. This standard defines 128
codes which will be used to represent any letter which might appear in your document, as well as many
control codes (eg. codes for moving the printer carriage to the left margin, codes for selecting a new page
and so on).

ASCII stands for "American Standard Codes for Information Interchange", A name which highlights its
origins, and also gives a clue to one problem that ASCII has, which is that this was an American standard
which the pre-eminence of the American computing industry has forced the rest of the world to adopt,
rather than being a truly international standard. This may be problem at certain times because there are
characters which do not occur in American text which are sometimes required for other countries, for
example the currency symbol of the UK, or non-Roman characters used in many European languages.
Although you can often represent these characters on your own computer, and sometimes even on your
printer (if it has been modified for the country of use), with communications it is a real problem, since the
lack of an accepted standard for such characters makes it totally impossible to (for example) send an
email message containing these characters to a computer which either uses different codes to represent
those characters, or which might even fail to represent those characters at all.

Although new code standards have been defined by international organisations such as the ISO, these
have not as yet achieved anything like the universality of ASCII, despite the problems of the latter.

In the previous section you were told that your computer stores one character as one byte, which is eight
bits. However, if you know your binary arithmetic you will know that only seven bits are required to
represent the 128 standard ASCII codes, so an eight bit byte has the potential to code another 128
characters on top of the standard ASCII character set. The IBM PC makes use of this fact to extend its
character set to include ASCII, plus 128 other characters used for national character codes, line drawing
and semi-graphic characters. This superset of the ASCII standard is sometimes used by bulletin board
systems to create impressive log on banners. Note that Windows documentation refers to this PC
extended ASCII character set as the "OEM character set", and uses a quite different eight bit character
set (ANSI) for most purposes.

Notice that the ASCII standard is only required if you want to represent readable text on a computer or
peripheral device. If the data does not need to be read by humans then the standard codes can be used
for something else entirely. You may have come across this distinction with files stored on your computer.
For example, if a file (document) is intended to be exchangeable between devices and interpreted
according to ASCII then the file will often be referred to as an "ASCII text file", or simply as a "text file". If
the file is not intended to be interpreted as ASCII then it will often be called a "binary file". These
distinctions also crop up in file transfer, when descriptions talk about "ASCII File Transfer" or "Binary
File Transfer". You should realise that there may be no physical difference in the data, the difference lies
solely in how the data is interpreted.

Introducing Communications
Baud Rates
One of the properties of serial connections is the data rate, meaning the speed in bits per second at which
data is transferred through the serial port. This bit rate is commonly referred to in the industry as the
"baud rate", a term which is convenient, but technically inaccurate. However, to avoid confusion, we will
adopt this misnomer throughout this document. When a modem is described as being "capable of 2400
baud", this means that it can receive and transmit up to 2400 bits per second.

In reality, one baud is one change in signal level on a telephone wire, but the level chosen could in fact
represent any number of bits, depending solely on the number of different levels which can be
distinguished.

For example, if your modem can recognise sixteen different tones, then each tone will represent four bits,
and while the baud rate might be 600, the bit rate will be four times that, or 2400 bps. It is easy to see why
this is so - receiving any of the sixteen tones can be imagined as selecting one of sixteen possibilities,
numbered from 0 to 15 in decimal, or in binary as 0000 to 1111. In other words each tone can be thought
of as a way of encoding any combination of four bits. Returning to the confusion of "bit rate" and "baud
rate", one bit in fact equals one baud only when the modem distinguishes just two tones.

In real life, modems do use techniques other than simple level (amplitude) modulation to encode signals,
but the principle is the same regardless.

Introducing Communications
Synchronous vs Asynchronous
Serial connections can be either "synchronous" or "asynchronous". A synchronous serial connection is
one in which the two sides of the connection exchange timing information as well as data, with the arrival
of bits on the interface being synchronised to the time signal. On the other hand, an asynchronous serial
connection does not need a separate timing signal; instead the sender transmits an additional bit at the
beginning of each byte (called the start bit), which alerts the receiver that more bits follow. The sender
also transmits either one or two bits at the end of the byte to complete the transfer (called stop bits), and
this allows the receiver to know that it has received all the intervening bits correctly (if its timing was off, it
would probably miss the stop bits). Normally a single stop bit is sufficient. Using this method the bits
within a byte must still be synchronised to the baud rate, but unlike a synchronous connection, the interval
between bytes is not important. The standard serial adapter in your PC provides an asynchronous serial
interface.

Note that an asynchronous serial connection actually sends ten bits (assuming one start and one stop bit)
for each eight bit character transmitted, so for example, a 2400 bps connection would actually realise a
maximum throughput of 2400 divided by 10, or 240 characters per second.

Introducing Communications
Parity
In many cases, communications will take place via the telephone network, where it is subject to electrical
interference, crosstalk, temporary loss of carrier etc. To use the generic term, these communications are
subjected to line noise. In the early days of communications a primitive error detection system called
Parity Checking was invented in the hope of trapping some of these errors, so that data affected by
noise could be discounted. Parity checking works by reserving one bit of each byte as the "parity bit", and
this bit is set or reset according to rules which are known to both sides of the link. For example, the two
sides might agree to use "even parity", which means that the eight bits of transmitted data (including the
parity bit), must contain an even number of one bits. If the first seven data bits contain an even number of
one bits then the parity bit is set to zero, otherwise it is set to one, to make an even number.

At the receiving end, the computer (in actual fact, the UART) checks that the byte it received contained an
even number of one bits. If this is not the case, then one or more bits have been damaged, and the byte
is discarded.

Even parity is the most common of parity check schemes, however variations include odd parity checking
(where there must be an odd number of one bits), and mark or space parity checking, in which the parity
bit is either always one, or always zero.

You may consider that parity checking sounds of limited use, and you may well be right. On the one hand,
it does not guarantee to detect all errors. In fact every byte could be in error, but if they all happen to have
the correct number of one bits then parity checking will see nothing amiss. On the other hand, even when
it does detect an error, it just throws the data away. This data could have come from a space probe,
gathered at enormous cost and transmitted the long distance to an earth receiver, only to be wastefully
discarded when it arrives.

Parity checking should these days be considered archaic, yet it is still in common use on public
communications networks. Where sense prevails, parity checking has been replaced by more
sophisticated protocols which not only detect errors, but also correct them - the MNP protocol built into
Odyssey is one of these more modern alternatives. Whereas parity checking would be lucky to catch 50%
of those bytes in error, the modern protocols use an entirely different system of error detection (called
CRC checking) which makes it highly unlikely that a block of data containing an error will pass undetected
(less than one chance in 65,000 per block of 1024 bytes is typical).

Another problem with parity checking is inefficiency. This could be the worst sin of all, since as well as
having the least impressive error detection capability, parity checking also has the highest overhead. CRC
details vary, but the CRC mentioned above would reserve one bit for integrity checking to every 512 bits
of data, which compares very well to the one check bit per seven data bits used by parity checking. The
bit wasted by parity checks is most often a problem when you want to perform a file transfer, since if the
data in the file uses the eighth bit (ie. when transferring binary data), then it is difficult to transfer the file
using only the seven usable bits per byte of a parity checked link. This is not impossible to do, it just
makes file transfers take longer - wasted time which the user pays for through inflated phone bills.

Introducing Communications
Flow Control
Having connected two systems together using our asynchronous serial interface, the next thing we need
to learn about is flow control. This is required because the chosen baud rate will at times be too fast for
the receiving side to handle. This requires that the receiving side have some agreed signal it can use to
tell the transmitter to "hold it a moment!", until it is again ready to resume transfer at the full rate.

There are two basic types of flow control, referred to as "hardware" and "software" flow control. Strictly
speaking the hardware flow control method described below is not standard as far as RS232 is
concerned, it is however the de-facto standard implemented by nearly all PC modems and comms
software.

The hardware flow control method reserves two of the wires on the serial interface (called RTS and CTS),
RTS being the signal controlled by the computer, while CTS is controlled by the modem. Both signals are
normally held high, but when the computer cannot receive more data it signals this to the modem by
lowering RTS, and likewise when the modem is unable to receive it signals this to the computer by
lowering CTS. When the computer or modem is once more able to receive, it raises its signal to inform
the other.

Software flow control sets aside specific bytes which can only be used for stop/start signalling. The bytes
used are called XON and XOFF. When the receiving side does not want to receive more data it transmits
the XOFF byte to the sender, and when it is ready to receive again it transmits the XON byte. The
characters normally reserved for this purpose are Control-S for XOFF, and Control-Q for XON. There are
other variations on the software flow control theme, however these are unusual, and are not implemented
in Odyssey.

Odyssey allows you to choose which flow control method you prefer, including no flow control at all. A
disadvantage of software flow control is that it is possible for the XON and XOFF signals to be transmitted
unintentionally, for example if they happen to occur in a file being transferred. For this reason it is
suggested that where possible you use the hardware flow control method. You can also use no flow
control at all, but then you must ensure that you never send data to the remote computer faster than it can
be handled, otherwise some of the data will be lost.

Introducing Communications
Modems
As was mentioned previously, it is convenient to use the telephone network to connect computers
together over large distances. Unfortunately, telephones have been around a good deal longer than
computers, and the telephone network was clearly not designed with optimal computer communications in
mind. In order to use the telephone system your computer therefore needs some assistance.

The phone system was actually designed to carry voice communications only, that is, sounds (or
analogue data in the jargon). Computers on the other hand communicate using binary ones and zeros (or
digital data). To use the telephone network you need some device which can convert a computer's ones
and zeros into sounds, and at the other end a similar device to convert the sounds back into ones and
zeros.

Enter the MODEM, a device which does exactly that, and whose name is derived from the two words
MOdulate and DEModulate, referring to the job it does of converting data from digital to analogue
(modulation), and back again (demodulation).

There are many different types of modems available, and ways of connecting them to the telephone
network. For most computers the modem is a peripheral piece of equipment, but for the IBM PC and
compatibles, there is also the option of a card modem which fits into one of the expansion slots.
Alternatively the modem may be built into the computer as standard, as in some laptop portables.

If the modem is stand-alone, then it will have to be connected to the computer through the serial
connector (port) on the rear of your machine. If a serial port is not provided as standard in your PC then
an adapter card will need to be purchased which contains one before the modem can be connected.
Internal "card" modems are essentially a modem built onto a serial adapter card, so internal modems do
not require a separate serial adapter.

These days the term "modem" covers a huge variety of widely different devices, from the simplest
acoustic coupler, through medium speed interfaces, up to high speed controllers. Most Odyssey users will
be interested in the medium speed devices, and we will also briefly describe the acoustic coupler.

The Acoustic Coupler is the oldest type of modem, which uses rubber or sponge cups or pads which fit
over a standard telephone handset. Except in unusual circumstances these modems are now considered
obsolete because of their susceptibility to external sounds and their normally lower data rates (300 baud
is common). Nowadays, acoustic couplers are generally used only where a modem cannot easily be
plugged directly in a telephone socket, for example when travelling abroad where standards for telephone
sockets may differ, or where there are legal restrictions on direct electrical connection of devices not
approved by the local telephone network authority.

A typical modern workhorse modem will accept serial data at speeds of 2400 baud or better, convert this
data into a form acceptable to the telephone system, and transmit it to a similar modem attached at a
remote point in the network. It will also receive data from its opposite number, and pass the reconstructed
data to the local computer. Most modems these days offer "Auto-Dial" and "Auto-Answer" facilities (see
the notes on Hayes compatibility in the next topic).

There have been enormous strides in modem technology since 1985. Whereas at one time 1200 baud
was considered risky, and 2400 baud foolhardy, these days 2400 baud is commonplace, and better
modems are communicating reliably at speeds of 28,800 baud or better. Not so long ago speeds such as
these were not even possible on expensive leased telephone lines, designed specifically for computer
use.

For the sake of simplicity, the above discussion supposed that a telephone network

communicates using sounds. Although this is apparently true from a human, functional point of view, in
actual fact we know that the network really handles electrical signals. The microphone in your telephone
handset converts sounds into an electrical signal and it is this which is communicated to the remote part
of the network. The main difference between a simple acoustic coupler and other modems is that the
former does not have a direct electrical connection to the telephone network, and so must use a speaker
to convert digital data into sounds, which your telephone handset then converts (along with other sounds
coming from the vicinity of the telephone) into electrical signals . In the case of modern modems, these
have a direct connection to the telephone network and so simply convert directly from digital data to the
electrical signals required by the network, without the problems of noise pollution (these can however
suffer from electrical noise).

Introducing Communications
Hayes Compatibility
Some years ago the US manufacturer "Hayes" did the industry a service by implementing a standard set
of functions within a modem which could be controlled by simple software commands, and which relieved
the computer software of many of the fussy details formerly associated with control of the telephone
connection. This was the first of the so-called Smart Modems. These modems are controlled by a
number of commands all beginning with the sequence "AT" (hence the reference to "AT commands" you
may have heard), and are much simpler to use for complicated tasks such as dialing and answering calls.
Where once the computer would have to pulse the transmit line to dial, or monitor several of the wires on
the modem interface when it wanted to answer, smart modems implement "auto-dial" and "auto-
answer", which takes care of these tasks without help from the computer software, allowing the software
to get on with the more important things.

NOTE: Odyssey does not require Hayes compatibility, although it is strongly recommended. Although
Hayes compatibility is not mandatory, Odyssey does assume that the modem is controlled by means of a
similar interface.

Introducing Communications
Remote Dialed Systems
Up to this point, only your own hardware and software has been discussed, yet it is obvious that the type
of host system you intend to call should be considered. There are three types of system you might choose
to call: another single user, a host computer running some sort of email, bulletin board or similar software,
or one of several online database systems.

The single user is simply someone who, like yourself, has access to a computer and modem, and with
whom you wish to communicate. Provided that the other user has the appropriate modem (preferably
capable of auto-answer), and software, then there is nothing to prevent you from calling that person and
transferring files. All that is required is that their computer is set up ready to receive a call (in Odyssey,
that is done by placing the software in host mode, or by transmitting the "enable auto answer" command
to the modem).

A Bulletin Board System (BBS) is really just an electronic meeting place where possibly thousands of
people can ask and answer questions, exchange programs and ideas, and generally run up large phone
bills. Lists of free and commercial systems in your area can be found in many good quality computer
magazines. The commercial systems will normally require that you pay a subscription and/or connect
charges to use their systems, and this is often worthwhile, considering the wider range of facilities made
available. Most BBS systems assume a simple text terminal for displaying messages, although some
support simple graphics which can be displayed if your software is capable of ANSI or Videotex terminal
emulation (Odyssey provides both). Videotex (called PRESTEL emulation in Odyssey) displays block
graphics similar to television "teletext" services, while ANSI BBS hosts generally assume IBM PC (OEM)
compatible character sets and color modes.

Online database providers are all commercial, and these exist to supply you with information - at a
price! A wide variety of business, financial, and professional information is available, but obtaining it will
normally involve initial connect charges plus a separate charge for accessing the particular information
which interests you.

With these different types of systems, running on different computers, you can naturally expect that there
are a wide variety of requirements with regard to speed, terminal types, parity checks and so forth, and
this is indeed the case. You can deal with most of this variety by entering the appropriate details into
Odyssey's dialing directory, but the range of speeds you can use are dictated by the type of modem you
have. These are some of the many modem standards you might meet, and the speeds they relate to:-

Standard Receive/Transmit

V.21 300/300
V.22 1200/1200
V.23 1200/75
V.22bis 2400/2400
V.32 9600/9600
V.32bis 14400/14400
Bell 103A 300/300
Bell 212A 1200/1200

The latter two are US-only standards, while the remainder are the CCITT standards adopted by most of
the rest of the world. The only Bell standard which will give you trouble is the 103A (300 baud) system,
which is totally incompatible with CCITT V.21. Your modem will have to specifically support Bell 103A or
CCITT V.21 if you wish to call such a service. The Bell 212A standard is more or less compatible with
CCITT V.22, and many people find that they can call these systems using CCITT compatible modems
without much difficulty.

Modern modems often support several of the above standards, and can be set to conform to one or
another by means of switches or software commands.

Introducing Communications
Direct Connections
It is not always necessary to use a modem to connect computers together. If the two computers
concerned are relatively close to each other (i.e. within 50 feet), then they can be connected using a
correctly wired serial cable. Such a cable is sometimes called a "null modem", because the cable is
wired in such a way that modems are not required. At Skyro Software however we consider the term "null
modem" to be rather pretentious, so we will just refer to a "cable".

NOTE: Using a direct connection, speeds of up to 19,200 bits/sec or even more may be achieved,
depending on the computers involved, and the software they use. You should be aware however that IBM
do not recommend speeds greater than 9600 bps on PCs, or 19,200 on PS/2s.

Introducing Communications
File Transfer
No matter the type of remote system called, a common requirement is the ability to transfer stored
information (files) between computers, whether directly connected or connected via the telephone
network.

The methods used for file transfer are called "Protocols", and these are simply a set of rules understood
by both sides which govern the process of transferring the data, and making sure that it is stored correctly
on the receiving machine. In order to use a particular protocol, that protocol must be supported by both
ends of the link, and any requirements of the protocol must be satisfied. For example, the XMODEM
protocol will not work on parity checked links, or on links using XON/XOFF flow control.

The purpose of a file transfer protocol is to ensure that files are transferred, error free, from one system to
another. File transfer protocols also handle pacing (ensuring that the sender is not transmitting data faster
than the receiver can write it to disk), and they may also convert files into a form more suitable for the
receiving computer, eg. by observing local conventions for end of line markers in text files.

Because of the multiplicity of file transfer protocols available, it is up to the user of the software to ensure
that both sender and receiver use the same protocol. This is necessary for successful file transfer to be
achieved.

As has been described above, file transfer protocols ensure that files can be transferred without
corruption between computer systems, meaning that, during file transfer, the protocol will deal with any
line noise errors that occur. However, when posting or reading normal text which is not stored as a file,
the problem of line noise may still be apparent, however Odyssey's MNP support will take care of that.

Odyssey Help
Odyssey Configuration
Odyssey is configured by means of a set of dialogs available from the Setup menu, which is itself
available on the main menu bar of all Odyssey document window types (see Odyssey and the MDI
interface). Once you have made your changes to a dialog you can then save those changes by selecting
the Setup|Save settings menu item, or just click the Save button available in any of the dialogs.

Setup|Communications
Setup|Modem...
Setup|General...
Setup|Editor
Setup|File transfer...
Setup|Terminal emulation...
Setup|FAX...
Setup|Host mode...
Setup|Keyboard macros...
Setup|Printer...
Setup|Save settings

 In modem control and init strings, as elsewhere in Odyssey, the vertical bar character '|' (ASCII
124) is used to represent carriage returns, ie. is equivalent to pressing the <Enter> key at that point if you
were typing the modem command manually. Don't forget to add these, and don't delete them from
existing strings! Another character which you can use in modem control strings is the tilde '~', which
represents a delay of 0.5 seconds.

Odyssey Configuration
Setup|Communications Dialog
The Setup|Communications dialog is actually just one page of the Odyssey Configuration dialog, which
is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change
pages, just click on a white tab.

The Setup|Communications dialog is used to configure the baud rate, parity, flow control and other
communication settings which Odyssey will use when the PC is directly connected to another PC or when
Odyssey is being used for terminal emulation to a directly connected host device (see the note at the end
of this topic for why directly connected is emphasised).

The fields on the dialog are as follows:-

Comm port: Selecting this field pulls down a listbox which offers you a choice of comm ports, including
NUL0: (a null port) or real ports named COM1 to COM8. Not all of these ports are necessarily available
for use on your machine - Odyssey will check that the serial port actually exists on your system, and is not
in use by another application, before allowing you to use it. If Odyssey determines that the chosen comm
port does not exist, then it will switch to the NUL0: port. The NUL0: port is an imaginary port which
essentially just gives Odyssey something to attach itself to when it isn't attached to a real port. The NUL0
port is also sometimes useful to users who want to select a port after startup, eg. under script control.

Baud rate: This option has ten possible settings from 300 to 115200 bits per second and is the rate at
which data is sent or received. You may use any setting which is acceptable to the device with which you
wish to communicate. Notice that Odyssey does not offer a 1200/75 bps option (V.23). This is because
Odyssey only supports V.23 modems which are speed buffered, and to use such a modem you should set
the port for 1200 baud full duplex (and remember to enable RTS/CTS flow control).

 Speeds above 19200 bps may not be reliable on your hardware. You can usually cure such
problems by purchasing a replacement serial board for your machine which incorporates the more
modern NS16550AFN UART. This device is capable of buffering interrupts for longer than the standard
8250 with which it is otherwise compatible, which makes it ideally suited to multitasking systems such as
Windows.

Data bits: Different hosts will have different expectations regarding the number of significant data bits in
each byte that you transmit to them. Some expect seven data bits per byte, and some expect eight - this
option allows you to select which setting you wish to use. For most BBS systems eight data bits is normal.
As an alternative to setting seven data bits, you might wish to consider leaving data bits set to eight, and
enable the "Strip parity" option either in the Setup|Terminal dialog, or for individual services using the
appropriate dialing directory entry.

Stop bits: In asynchronous communications, start and stop bits are added to each character transmitted
(see "Introduction to Communications"). Some systems will use a single stop bit while others use two.
Most systems use one stop bit.

Parity: This option has three settings (None, Even or Odd). In most cases None will be used, ie. no
parity, however some systems may require Even parity. Note that any parity setting other than None
normally implies seven data bits. However, Odyssey does not enforce this, except when parity is set using
the dialing directory.

Flow control: Odyssey supports both hardware and software flow control. Hardware flow control
(Rts/Cts) is normally used with direct PC to PC file transfer or when connected to modems which provide
internal buffering (which means nearly all modems these days). Software flow control (Xon/Xoff) is normal
in situations such as a direct connection to a mainframe computer system. Avoid using software flow
control unless strictly necessary, since that type of flow control upsets many file transfer protocols. In

particular, you would not be able to use Xmodem or Ymodem file transfer over a link which uses Xon/Xoff
flow control, and even when the protocol supposedly supports software flow control, (for example,
Zmodem or Kermit) there is little point in giving the remote software the chance to mess things up
unnecessarily.

Detect modem at startup: Odyssey normally attempts, during startup initialization, to confirm that a
modem is switched on and connected to the port which Odyssey is configured to use, and will display an
alert dialog if a modem is not detected. The check involves transmitting the init string to the modem, and
looking for an echo. An echo normally means that a modem is connected, although it is sometimes
possible to get an echo from an incorrectly wired serial cable (ie. one in which the receive and transmit
wires are crossed). If you do not want Odyssey to carry out the "modem present" check (eg. because you
are not using Odyssey with a modem) then you should disable this option. Odyssey will not carry out this
check, regardless of the setting of this option, if your init string is blank, or if Odyssey is configured to use
the NUL0 comm port.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page.

The Pick Modem button is available in all Odyssey configuration dialog pages, and is described
separately.

Note that communications settings such as baud rate and parity are overridden when you
connect to a service using the dialer. If you are intending to edit the communications settings for a
particular dialed host, then you should edit the dialing directory entry for that service, rather than using the
Setup|Comms dialog.

Odyssey Configuration
Setup|Modem (Dial Commands) Dialog
The Setup|Modem (Dial Commands) dialog is actually just one page of the Odyssey Configuration
dialog, which is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog;
to change pages, just click on a white tab. Note that although there is only one entry point from the menu
for modem configuration, modem configuration has too many options and so had to be spread over four
dialog pages - note the Dial cmds, Connect/Fail, Init strings and Num prefixes tabs.

Tone dial prefix, Pulse dial prefix: The Dial Prefixes allow you to tell Odyssey what command it should
transmit to the modem to make it dial a number. Odyssey will normally follow the selected prefix with the
number to be dialed, and then the Dial Suffix. For example, on Hayes compatible modems the tone dial
prefix is normally "ATDT", and the pulse dial prefix is normally "ATDP". The Dial Mode option (discussed
below) selects which of these prefixes Odyssey actually sends to the modem. See also: How Odyssey
constructs the dial command.

Dial Suffix: The Dial Suffix allows you to tell Odyssey what code or string to issue to the modem to
complete a dialing command. Before transmitting the suffix Odyssey will have issued the appropriate dial
prefix and the number to dial (see How Odyssey constructs the dial command). For Hayes modems all
that is required for a suffix is the end of line marker ("|" in Odyssey). Beware of leaving this marker out, as
that will almost certainly cause some very strange effects, such as the modem not executing the dial
command until after the Odyssey dialer window has timed out.

Dial Mode: The Tone/Pulse dial prefix fields provided the modem command strings for tone and pulse
dialing. However, Odyssey also needs to know which one it is supposed to use. If your phone uses tone
dialing then set this option to Tone. If your phone uses pulse dialing then set this option to Pulse.

Hangup command: The Hangup command field tells Odyssey the modem command which should be
used to hang up the line. For Hayes modems this is usually "~~~+++~~~ATH0|". Currently this command
is used only by the Odyssey dialer, when it wishes to reset the telephone line after an unsuccessful dial
attempt. The ALT+H command in Odyssey uses the RS-232 standard method of hanging up the line, that
is, by dropping the DTR signal for roughly half a second. Note that this means that your modem must not
be configured to ignore DTR. If you want Odyssey to always use DTR to hang up, then just delete all the
characters in this string (don't just overtype them with spaces). This trick can be handy if your modem has
the "BLACKLIST" feature required by some public telephone authorities, since most such modems
provide an option to zap the blacklist when DTR is toggled.

Connect timeout: This is the number of seconds allowed following the issue of a dial command before
Odyssey decides that the attempted connection has failed. This timeout will only be reached if Odyssey
has not received either the connect message or one of the connect failure messages in the intervening
period. The default timeout should be long enough for most national calls using pulse dialing. If you wish
to make international calls then you may need to configure a longer timeout period, or if your local
exchange supports tone dialing then you may use a shorter timeout. Remember that connection times
vary, even on the same number. If you make the timeout too short then you may find Odyssey often fails
to connect in time. You should be able to recognise this quite easily, if it happens.

Maximum Redials: If Odyssey fails to connect with a service at the first dial attempt then it will retry, up
to the maximum number of retries entered here. Notice that this is a REdial maximum. Odyssey will
always attempt the number at least once, and then retry as many times as are specified here. If Odyssey
is dialing several numbers from a dial queue then it will not persist with one number up to the retry limit,
but will instead cycle around the items in the queue until each has been dialed the maximum number of
times, or until a connection is established on one of the numbers.

Delay before redialing: Sometimes your modem needs a little time to recover between dial attempts. If
so, then you can control how much breathing time Odyssey gives it by changing this setting. The default
is one second.

Error correction done by: Odyssey provides an option in each dialing directory entry which enables or
disables error correction for individual services. If you enable error correction for a service Odyssey then
needs to know whether that error correction is to be carried out by your modem, or whether you want to
use Odyssey's internal software MNP5 implementation. Check the 'Modem' option if your modem
supports hardware MNP5 (or better) or V42bis - otherwise check the 'Software' option, which enables
the use of Ody's software MNP. Note that if your modem supports an inferior MNP level (eg. MNP2) then
you will still want to use Ody's software MNP, but you will need to give Odyssey the strings your modem
uses for its "Disable Error Correction" command. That string is configured in the "Init Strings" page of this
dialog.

Always init before dialing: When Odyssey is asked to dial several numbers in a round robin queue, it
starts by sending an init string appropriate for the first service to be dialed. Thereafter (assuming it doesn't
connect) it will only send a new init string to the modem if the requirements of the next service in the
queue differ from the previous one in some way, eg. in error correction. However, for some users, this
"smart init" can be somewhat too smart, because modem settings can also be changed using the
"number prefix" feature, a change which will not be reset unless Odyssey sends another init string.
However, sending an init string before each and every dial attempt will slow down the dialing routine,
perhaps unnecessarily. To resolve this conflict you are given the choice: if you want Odyssey to send the
init always, before every dial attempt, then enable this checkbox field. If you are not embedding modem
configuration commands in telephone numbers in the dialing directory then leave this option disabled.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page.

The Pick Modem button is available in all Odyssey configuration dialog pages, and is described
separately.

Odyssey Configuration
Setup|Modem (Connect Msgs) Dialog
The Setup|Modem (Connect Messages) dialog is actually just one page of the Odyssey Configuration
dialog, which is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog;
to change pages, just click on a white tab. Note that although there is only one entry point from the menu
for modem configuration, modem configuration has too many options and so had to be spread over four
dialog pages - see the Dial cmds, Connect/Fail, Init strings and Num prefixes tabs.

Odyssey dials a number by transmitting a dial command to the modem (see How Odyssey constructs the
dial command), and then waiting for some kind of reply, indicating either success or failure of the dial
attempt. This dialog page allows you to tell Odyssey what strings might be expected in that reply, and
whether it means success or not. Odyssey allows you to enter one "success" string, and up to six "failure"
strings. If you don't need all six of the latter then just leave the unused fields blank.

Connect OK: Is the "success" response. For Hayes modems this is normally "CONNECT". Note that you
should not specify a complete response line, eg. "CONNECT 2400" as this would prevent Odyssey from
recognising other equally valid success messages, such as "CONNECT 1200". See notes elsewhere
about baud rate detection in Odyssey.

Connect fail 1...6: are the failure messages which might be issued by the modem when a call fails to
connect (eg. "BUSY" or "NO CARRIER"). When Odyssey is waiting for a connection to be established it
ignores anything received from the modem unless it is either the connect string described above, or one
of the failure strings.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Beware of modems which issue a friendly message such as "Waiting for Connection" while it dials
the number. The first seven letters of "Connection" would deceive Odyssey into thinking that a connection
had been established, when in fact it hasn't. You can check this by issuing a dial command manually from
the terminal keyboard ("ATDT"<number><enter>) if you think you may have this problem. All modems we
have come across which display this message also have an option to disable it - an option which you
should avail yourself of!

Odyssey Configuration
Setup|Modem (Init strings) Dialog
The Setup|Modem (Init strings) dialog is actually just one page of the Odyssey Configuration dialog,
which is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog; to
change pages, just click on a white tab. Note that although there is only one entry point from the menu for
modem configuration, modem configuration has too many options and so had to be spread over four
dialog pages - see the Dial cmds, Connect/Fail, Init strings and Num prefixes tabs.

An init string is a command which Ody sends to the modem in order to ensure that the modem is
configured as we require. Odyssey has two kinds of init string :-
· The main "Init string" is transmitted once, when Ody first runs, just to make sure that the modem is

configured to Odyssey's expectations, and not those of some other package - you can also force this
string to be transmitted by typing ALT+J, selecting the Command|Re-initialize modem menu item
(when the terminal window is active), or by using the ModemInit() command from a script.

· Dialer init strings (including the error correction init strings) are transmitted just before Odyssey dials a
number, and these configure the modem to the requirements of a particular service. Additionally,
Odyssey uses the reply from the dialer init string as an indication that the modem is attached and
working, since if the modem isn't working then there isn't any point in continuing with the dial attempt.

The fields on the Setup|Modem (Init strings) dialog page are described below. Note also the buttons on
this dialog :- Click on OK to confirm changes to the dialog, and any other dialog pages you have visited.
Click on Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish
to make your changes last beyond the current Odyssey session. Clicking the Help button displays this
help topic. Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick
Modem button is available in all Odyssey configuration dialog pages, and is described separately.

Init string

This is the main init string mentioned above. It should contain any commands which set required defaults
in the modem for the current session. Odyssey by default inserts whatever init string has been defined for
your modem in the ODYSSEY.MDM file. Some users may prefer to have no init string at all, and instead
depend on the settings stored in the modem non-volatile RAM. If your modem does not offer such a
feature then you may be required to define an init string.

The exact meaning of "required defaults" depend on the modem. Assuming a Hayes compatible modem
however, those defaults would include :-

· Verbal result codes
· Commands should be echoed
· DCD should represent the true state of the carrier
· DTR should not be ignored
· Internal modem error correction should be disabled if you wish to use Odyssey software MNP.

A typical init string for a vanilla Hayes compatible modem might be "ATE1V1Q0X4S0=0|".

Dialer init string

The dialer init string is a separate initialization string which is sent to the modem before each dial attempt.
For Odyssey, the purpose of this string is mainly to elicit an "OK" response from the modem to confirm
that it is alive and well before the dial command is sent. However, if you need or prefer some pre-dial
initialization, then this is the place to put it.

 This string is not optional. There must be something in here which will provoke a response from
the modem, otherwise Odyssey will fail the dial attempt with a "Modem not responding" error message.

A typical pre-dial initialization would set a default operating mode in the modem prior to dialing a number,
for example you may wish to use "ATZ|" to restore factory defaults changed during a previous call. The
default dialer init string is "AT|", which does nothing except cause a Hayes compatible modem to return an
"OK" in reponse.

Although still required, the old dialer init string has been superceded to a certain extent by the "error
correction" strings which are described below. In previous Odyssey versions, the dialer init string would
always be sent before dialing. However, in the current version, Odyssey selects an appropriate init string
(either this one, or one of the error correction strings) and sends that instead. See How Odyssey Dials a
Number.

Un-init string

This field is for future expansion - it is not currently used.

Auto-answer on/off

These fields let Odyssey know the correct strings to use when instructing the modem whether or not to
auto-answer calls. The defaults...

Auto-answer on - AT|~ATS0=2
Auto-answer off - AT|~ATS0=0

...are correct for Hayes compatible modems - refer to your modem manual for the equivalent command if
yours is not Hayes compatible. Odyssey sends the "Auto-answer on" string when entering host mode
mode, and sends the "Auto-answer off" command when leaving host mode. Odyssey also sends these
strings when a script uses the AutoAnswer(TRUE|FALSE) script command.

Disable Error correction
Enable error correction, disable compression
Enable error correction and data compression

For an explanation of why these fields exist, see Odyssey and Error Correction.

The "Disable Error Correction" string is the command which Odyssey sends to the modem when it
wants to disable hardware error correction. Odyssey sends this string to the modem prior to dialing a
service which (according to its dialing directory entry) does not support error correction. Odyssey also
sends this string to the modem if the service does support error correction, but Odyssey software MNP is
preferred (eg. to disable MNP in an old modem which only supports MNP2). If your modem has no error
correction then this string may be left blank.

The "Enable error correction, disable compression" string is the command which Odyssey sends to
the modem when it wants to enable error correction, but disable data compression in the modem - which
it will do if the service to be called has "On (no compression)" as its Error Correction setting in the dialing
directory. You might wish to disable compression in this way, for example, if you have an MNP5 modem,
but intend to call a service to perform a long file transfer of compressed files (ARC, ZIP, LZH etc). MNP5
actually slows down the transfer of such files, whereas MNP4 (ie. error correction, but no compression),
would not. If your modem supports V.42bis data compression then this distinction is less important, since

V.42bis is smart enough not to send data which has actually been enlarged by its "compression" routines.
This string is not required, and may be left blank, if Odyssey software MNP is used or your modem does
not have hardware error correction.

The "Enable error correction and compression" string is the command which is sent to the modem
when both hardware error correction and data compression is required - which will be the case if the
service has "On (with compression)" as its Error Correction setting in the dialing directory. This string is
not required, and may be left blank if Odyssey software MNP is used or if your modem has no error
correction of its own.

Odyssey Configuration
Setup|Modem (Number prefixes) Dialog
The Setup|Modem (Number Prefixes) dialog is actually just one page of the Odyssey Configuration
dialog, which is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog;
to change pages, just click on a white tab. Note that although there is only one entry point from the menu
for modem configuration, modem configuration has too many options and so had to be spread over four
dialog pages - see the Dial cmds, Connect/Fail, Init strings and Num prefixes tabs.

Number prefixes allow Odyssey to handle very long (international) telephone numbers, or to handle
special service specific modem initialization commands. A prefix is embedded in a dialing command
whenever Odyssey meets a special symbol in the number it is asked to dial.

Up to ten prefixes (identified as A to J) are allowed, each up to 20 characters long. You use the prefix by
embedding a symbol such as @A in the telephone number field of the dialing directory entry. The valid
symbols are in the range @A to @J. For example you could have the following entry as a telephone
number:

@B-5678

and when Odyssey dials, the @B symbol will be replaced in situ with the string you have defined as prefix
B. For example if your dial prefix was "ATDT", your dial suffix "|", and prefix B was defined as "091-234",
then the resulting dial command which is sent to the modem would be:-

ATDT091-234-5678|

Alternatively, you can use symbols %A to %J instead. Odyssey handles this slightly differently in that the
prefix becomes a true prefix, ie. it is inserted at the start of the dial command rather than where the
symbol occurred. For example, if the dial prefix and suffix were as above, and prefix A were defined as
ATZ|~~, and the telephone number field was %A091-234-5678 then the resulting modem dial command
would be:-

ATZ|~~ATDT091-234-5678|

Using the second form of number prefix, it is not actually important where in the telephone number the
prefix code appears, since it always results in the prefix being inserted at the beginning of the dial
command string. When using this feature you should bear in mind that Odyssey examines the telephone
number from left to right, and when it meets a '%' symbol the corresponding prefix is fetched and inserted
at the start of the dial command - which means that if you have more than one '%' expansion symbol in
the telephone number then the corresponding prefixes will appear in the dial command in reverse order of
their appearance in the number.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|General Dialog
The Setup|General dialog is actually just one page of the Odyssey Configuration dialog, which is a
multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change
pages, just click on a white tab.

The fields on the Setup|General dialog are as follows:-

"Directories for..." panel

The fields in this panel tell Odyssey where to find, or where to put various files.

Directory for Downloads: You can instruct Odyssey to always store downloaded files in a particular
directory, the one set up using this option. If this entry is blank then downloaded files are stored in the
Odyssey directory instead. Note that if you nominate a directory then this directory must exist - Odyssey
will not create it for you.

Directory for Uploads: If you ask Odyssey to upload a file, and do not specify a path, then Odyssey will
look for the file in the directory you specify here. If you do not nominate a directory here then the Odyssey
home directory is assumed. Again, Odyssey will not automatically create the upload directory.

Directory for Scripts: When you pull down the Terminal window Command menu, Odyssey displays a
list of scripts you may run. When you dial a number from the dialing directory, Odyssey looks for a script
whose name matches the directory entry key, and runs that script automatically. In both cases, Odyssey
needs to know where to look for scripts. If you leave this field blank then Odyssey expects to find all
scripts in the Odyssey home directory. Note that Odyssey will only search one directory at a time for
scripts.

"Default Fonts" panel

The fields in this panel tell Odyssey which fonts you prefer it to use in various windows.

Default fixed width font: The contents of this field tells Odyssey which Windows font to use in any
window which requires a fixed width font. Currently, the only applicable window type is an Odyssey text
editor window.

Default variable width font: The contents of this field tells Odyssey which Windows font to use in any
window which can use a variable pitch font - note that you can select a fixed width font for this field also.
Amongst other window types, this setting affects the dialing directory "list of services" panel, dialer 'dial
queue' dialog, file selector listbox, and Fax server listbox.

Note that Odyssey uses a special logic to select the specialized font used in the terminal window,
and hence neither of the above settings affects that window. Likewise, for the status line Odyssey must
select a font which will fit, and so the status line is also unaffected by these settings.

"Miscellaneous options" panel

MNP smoothing: This setting is ignored unless you are using the software MNP feature. MNP receives
data in chunks called packets, and if the speed that the packets are displayed is significantly faster than
they are received then there will be a pause between terminal updates which can make the display look
jerky, and which some people find annoying. Odyssey can attempt to reduce this effect, however that

sometimes means that throughput is not quite as high as it may have been without smoothing. Use this
field to enable or disable the MNP smoothing feature.

Baud rate detection: This option affects the Odyssey dialer in situations when a dialed connection is
established at a speed not equal to the current terminal rate (the speed between PC and modem). Enable
this checkbox if you want Odyssey to adapt the terminal rate to the new connect rate, disable this
checkbox if Odyssey should leave the terminal baud rate alone. The latter is normal for speed buffered
modems, although the former may make file transfer more reliable on older modems if no flow control is
enabled. This option applies both to outgoing calls in terminal mode, or incoming calls during host mode.
See also: Baud rate detection.

Event logging: Event logging (sometimes known as "call logging" in other packages) is the recording of a
history of activities which the user might wish to keep track of. For example, recording the duration of
every phone call allows the user to check phone bills. The Odyssey event log is stored in a file called
ODYSSEY.REC, and contains details of call establishment and termination, file transfer file names and
throughputs, Fax transmissions and receptions, and so on. Since the call log grows indefinitely you may
wish to maintain it at regular intervals, either by pruning, deleting or moving to external storage.
Alternatively, you can disable event logging using this option.

Raw logging mode: Odyssey normally filters unusual control characters from logged text, because they
may upset your offline text editor. However, it is sometimes useful to be able to produce an unfiltered log
file when you want an exact copy of the received data, for example when logging the stream of terminal
control sequences to an Odyssey terminal emulation.

If Raw Logging Mode is disabled, and Odyssey is emulating a non-TTY terminal, then Odyssey will
attempt to strip out terminal control sequences, leaving readable ASCII text. When Raw Logging is
enabled Odyssey will leave control characters intact, regardless of the emulation in use.

Warning: The Odyssey editors, in common with most other text editors, assume that the file you are
editing consists entirely of ASCII text. Data received using Raw Logging mode may not be usable in the
Odyssey text editor.

Enable file transfer sound: If enabled, this setting tells Odyssey to play an audible alarm whenever a file
transfer completes or is terminated for some other reason. The alarm normally sounds for several
seconds, but may be interrupted by pressing a key.

Enable keyboard bell: If this checkbox is enabled, then a received ASCII 7 character (BEL or Control-G)
will cause a beep sound.

Confirm deletes in dialing directory: Odyssey allows you to delete dialing directory entries by pressing
the delete key or by clicking the 'Cut' button. By default, Odyssey does not ask for confirmation before
carrying out the deletion, since the deleted entry can always be pasted back. However, some users may
prefer that confirmation is requested. If you are worried by the "cat sitting on the keyboard" scenario, then
enable this checkbox.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page.

The Pick Modem button is available in all Odyssey configuration dialog pages, and is described
separately.

Odyssey Configuration
Setup|Editor Dialog
The Setup|Editor dialog is actually just one page of the Odyssey Configuration dialog, which is a multiple
page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change pages, just
click on a white tab.

The fields on the Setup|Editor dialog are described below. These settings control the initial settings of
various text editor options - when a new text editor window opens its options will be set according to the
value of the fields described here. Note that these options can also be changed dynamically, inside
individual text editor windows.

Editing Commands: The Odyssey text editor can be operated using either conventional Windows™
(CUA) keyboard commands, or by WordStar™ compatible commands. Click the appropriate radio button
to select the command set you prefer.

Keep backups: When saving a file, the Odyssey text editor first renames the existing file as
filename.BAK, but only if that feature is enabled here.

Insert mode initially...: When you type a character in insert mode, existing characters on the line are
moved right to make room for the new one. The opposite of insert mode is overtype mode, in which new
characters replace existing ones. Click the appropriate radio button to control which mode Odyssey
defaults to when a new text editor window opens.

Auto-indent initially...: The auto-indent feature in the Odyssey text editor applies when you press
<enter> to begin a new line. In auto-indent mode the new line has the same indent as the line just
completed, whereas when this mode is disabled, the new line will begin at column one. Check the 'On'
radio button to enable this feature.

Word-wrap initially...: The Odyssey text editor supports word wrap, which means that a new line will
automatically be started if you continue typing beyond the current right margin (the word being typed at
the time is automatically moved to the new line). Also, the text editor "Reformat Paragraph" command is
only enabled in word wrap mode, to avoid accidentally reformatting paragraphs on an inappropriate file,
eg. an Odyssey script source file.

Right justify initially...: The right justify option applies in word wrap mode. If right justification is enabled
then the Odyssey text editor will adjust the spacing between words in the line just completed so that the
line exactly meets the right margin. The same thing applies when Odyssey executes the "Reformat
Paragraph" command.

Tab fill character: This option controls the text editor "hard tabs" vs "soft tabs" feature. If the tab fill
character is <space> then soft tabs are in use, and when you type the tab key the text editor fills the
interval between the cursor position and the next tab stop with spaces. In hard tab mode (tab fill character
is <Tab>) the text editor fills the interval with the optimal number of tabs and space characters.

Tab spacing: This option may be set to "Smart" or "Fixed". In smart tabbing mode the editor treats the
column numbers of words on the previous line as the tab stops for the current line - a feature which is
very useful when editing tables etc. Fixed tab mode is the conventional tabbing mode in which tab stops
are set at regular intervals - the exact interval being defined in the Tab width field described below.

End of line marker: The Odyssey text editor can read ASCII text files whose lines end in CRLF (the
normal DOS convention), or LF (the convention for files originating on Unix systems). It can even handle
files which use a mixture of both (files captured by the text logging feature have a tendency to do this).
However, if when editing a file you decide to insert a new line, the text editor needs to know whether you
prefer that line to be terminated by LF or CRLF. The setting of this option decides that issue.

Tab width: This setting applies if Tab Spacing is set to Fixed (see above), and determines the interval of
the fixed tab stops.

Right margin at col: This field sets the right margin column number, which is used when word wrap
mode is enabled.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|File Transfer Dialog
The Setup|File transfer dialog is actually just one page of the Odyssey Configuration dialog, which is a
multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change
pages, just click on a white tab.

The Setup|File transfer dialog is used to set options supported by some of Odyssey's file transfer
protocols. The dialog includes panes for ASCII, Zmodem and Compuserve B+ options, and one checkbox
which applies to all protocols, including those protocols which do not have options in this dialog.

The one checkbox which applies to all protocols is the View GIF/JPEG images while downloading
option. If checked, this option means that whenever Odyssey is downloading a .GIF or .JPG file, it will
open a bitmap viewer window and show you the picture building up as the download progresses - this
works especially well with interleaved GIF images. Although this feature works only with GIF and JPEG
images at present, we may extend it to other image formats in future (note that this feature is only
practical on image types which always specify required information such as color palette etc ahead of the
bitmap data itself - so the feature will never work with formats such as TIFF or PCX).

Zmodem options...

This panel allows you to change some of the parameters which control Zmodem file transfer.

Auto-download: If enabled, then Odyssey will automatically recognise an incoming Zmodem header and
invoke a Zmodem download without user intervention, thus saving the user the trouble of selecting file
transfer at both ends of the serial link. If you intend to invoke a Zmodem download explicitly from a script
then you should think about disabling this option, otherwise your script is likely to be pre-empted by the
auto-download feature - this effect may be desirable, but you should be aware of the possibility of it
happening. This option is enabled by default.

Full streaming: If enabled, the remote Zmodem system can send at full speed without waiting for
Odyssey to write data to disk. If the disk drives on your PC are particularly slow, it would be best to
disable this option - this is rarely required.

Escape control codes: If it is required that all control codes be escaped, for example when using a
network which is not completely transparent to control codes, then enable this option. Zmodem always
escapes the most commonly troublesome characters, such as Xon, Xoff etc, but this option tells Zmodem
to escape every control code. This decreases throughput, so should only be used if truly necessary.

Compuserve B+ options...

This panel allows you to change some of the parameters which control Compuserve B+ file transfers.

Auto-start: This option is similar to the "Auto-download" option provided in the Zmodem panel. If
enabled, Odyssey will automatically recognise when the Compuserve host wishes to begin a file transfer,
and will invoke the Odyssey implementation of the CIS B+ file transfer protocol with no need for further
intervention from the user.

Compuserve uses a rather silly choice of character sequence to auto-invoke the B+ protocol; the
sequence is a single ENQ character (ascii code 5). This character is commonly used by hosts and some
intermediate networks to request an answerback message or terminal id from your terminal. If you have
CIS B+ auto-start enabled all the time then this innocent, and perfectly normal request from the host
would invoke a CIS B+ transfer! For this reason we recommend that you leave CIS B+ auto-start disabled

until after you are connected to the Compuserve host, ie. after entering your ID and password. This is
most conveniently done using a login script and the SetCISB() script command, but can also be done
using this dialog. A sample script is shipped with Odyssey, showing how to use the SetCISB() command -
see CISV32.SCR.

Interrogate Response: A Compuserve host sends out a sequence called the "Interrogation Sequence"
when a user logs on. The response tells the host your machine type, screen dimensions and so forth.
However, our tests have shown that it also causes the host to make other assumptions about the
terminal, such as that it can be controlled by VT52 control sequences, which is certainly possible in
Odyssey but is not always desirable if you want to be able to produce a pure ASCII log file. You may
disable this option, and Odyssey will not respond to the interrogation sequence.

Send-ahead enable: If enabled, the remote Compuserve host can send at full speed without waiting for
Odyssey to write data to disk. If the disk drives on your PC are particularly slow then it would be best to
disable this option.

Escape control codes: If it is required that all control codes be escaped, for example when using a
network which is not completely transparent to control codes, then enable this option. Notice that the
Compuserve host normally escapes the most important control characters anyway, so enabling this option
is only for the ultra-cautious, or for those who have a specific problem.

ASCII options...

This panel allows you to change some of the parameters which control ASCII uploads, and also affects
transmission of macros, the script language "Transmit" command, and so forth.

Inter-Character delay (ms): The number entered in this field represents the delay in milliseconds
between characters when uploading ASCII text, pasting messages, or transmitting a macro. The delay
may be from 0 to 9999 milliseconds, the default is 20 ms. Some systems are upset if characters are sent
too fast, mainly because the priority of their keyboard task has been chosen with average typing speeds
in mind, far less than the 240 cps to 3840 cps your modem might deliver. If you encounter this problem
then you can change the effective transmission speed of ASCII characters by changing this inter-
character delay.

This setting does not affect protocol file transfers other than ASCII upload. Also note the script Paste()
function is unaffected by this setting, although it is affected by the line delay setting which follows.

Inter-Line delay (ms): This can be changed to any number from 0-9999 (the default is 40), and
represents the delay in milliseconds between text lines, when uploading ASCII text or pasting a message.
Sending lines too fast can upset some systems, so if you think this is happening you should adjust the
line delay accordingly.

Expand blank lines: When performing an ASCII upload, it is sometimes necessary to avoid sending
blank lines, since these may be interpreted by the remote host as an instruction that the message has
ended. Odyssey can avoid this problem by replacing blank lines during an ASCII upload with a line
containing a single space character. If you want blank lines replaced in this way then enable this option. It
is enabled by default.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|Terminal Emulation Dialog
The Setup|Terminal emulation dialog is actually just one page of the Odyssey Configuration dialog,
which is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to
change pages, just click on a white tab.

This dialog contains many options which affect how Odyssey controls the terminal window, including the
choice of terminal emulations and terminal colors.

Strip Parity: This checkbox enables or disables Odyssey's Strip Parity Bit feature.

Auto line-wrap: If Auto Line Wrap is enabled, then Odyssey will insert a carriage return into any received
line which is longer than 80 characters. If line wrap is disabled then Odyssey will allow the line to be of
any length, however only the first 80 characters are actually displayed.

Local echo: When you type characters at the keyboard, they are not displayed on the screen (echoed)
by magic - instead, either the comms software or the remote host has to take responsibility for echoing
the keys you type. If you enable this option then you are instructing Odyssey that it must handle the
echoing of characters itself. If disabled (the normal case) then you are telling Odyssey that the remote
computer will echo the characters it receives. Local Echo can be set either here, or for individual services
using the dialing directory. There are two common mistakes which novices make where local echo is
concerned. One is to turn local echo on when it is not required (this results in characters appearing
ttwwiiccee on the display). The other mistake is of course to leave it off when it is required, which results
in no echo at all.

BackSpace key sends: This option tells Odyssey whether it should generate either backspace (ASCII 8)
or DEL (ASCII 127) when you press the backspace key. This option applies only when certain terminal
emulations (such as VT100) are used, and is ignored elsewhere.

CR-In translation: When text is received from a remote system any incoming carriage return can be
treated in one of two ways. If this option is set to CR then incoming carriage returns are left unchanged. If
set to CRLF then line feed characters are inserted after each incoming carriage return. Use the first
setting if incoming text lines are displayed double spaced when they should not be. Use the second
setting if incoming text lines overwrite each other.

CR-Out translation: When text is transmitted to a remote system outgoing carriage return characters can
be treated in one of two ways. If this option is set to CR then carriage returns are transmitted unchanged.
If set to CRLF then line feed characters are inserted after each outgoing carriage return. Most remote
systems will insert their own linefeed character when you send them a carriage return, in which case you
would use the CR only setting. Some (rare) systems however require that you send them a linefeed after
every CR, which is when the second setting is used.

Terminal type: This field selects the terminal type which the Odyssey terminal window will emulate.
Odyssey terminal emulations are separate files which are loaded into memory when required. The
emulation files all have an extension of ".TRM". To choose a new emulation simply choose from the list
presented which you click on the listbox "down arrow" icon. Note that no emulations will be displayed if
there are no ".TRM" files present in the Odyssey home directory. Note that terminal emulations can also
be selected automatically for a particular service by naming the required emulation in the dialing directory
entry for that service. Emulations can also be selected using the Emulate() script command.

Terminal Colors: This pushbutton leads to a subsidiary dialog (see Terminal Colors dialog) which can be
used to control the colors used by the Odyssey terminal window to represent monochrome attributes. You
should see the
description of that dialog for an explanation of this feature.

The remaining three options on this dialog are intended to be used by those who need to improve the
performance of the terminal window.

No 'blit' scrolling: The Odyssey terminal window emulates a scrolling text terminal, which sometimes
needs to be updated at quite high speeds (eg. in excess of 3840 characters per second). When this
volume of data is streamed the terminal is almost constantly scrolling, and performance is thus controlled
by how fast your video board can scroll a window. Odyssey can scroll the window in one of two ways :-

Blit scrolling - means that the terminal window is treated like a bitmap, and so scrolling involves doing a
bit block transfer. This is very fast if you own a "Windows accelerator" type board which supports BitBlt
operations in hardware. However, it can be slow if Windows has to emulate this function in software. This
is the default scrolling mode.

No Blit scrolling - Instead of scrolling the window as a bitmap, Odyssey will simply repaint the window. If
your video board can display text a lot faster than it can scroll bitmaps, then this would be the option to
use. However, it doesn't look as good as bitmap scrolling. You need to check the "No blit scrolling"
button if you want Odyssey to scroll in this way.

Deferred updates: If your video board is relatively slow at displaying text, then you may want to enable
this option. In 'deferred update' mode Odyssey will postpone physically updating the terminal window until
it has collected a larger number of operations which it can then paint in a single "refresh" operation,
reducing the overhead of painting characters one at a time. However, if you use this option and the "No
blit scrolling" option, and you are receiving a constant stream of scrolling text then you may find that large
chunks of text are skipped altogether, if it had been erased by later text prior to the refresh event.

Emulate 'Blink' attribute: The Odyssey terminal window emulates a DOS text mode display, including
the mapping of bits in a character attribute. One of those attribute bits is treated by text mode hardware
as either the "blink" attribute, or the "high intensity background color" attribute, depending on a BIOS
setting - some ANSI-BBS hosts may depend on this feature. If you enable this option then Odyssey will
emulate the BIOS feature, and will display characters with this attribute as blinking characters, otherwise
it will display them as non-blinking characters with high intensity background colors.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|FAX Dialog
The Setup|Fax dialog is actually just one page of the Odyssey Configuration dialog, which is a multiple
page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change pages, just
click on a white tab.

This dialog is used to configure options supported by the Odyssey Fax Server module.

Path and ID

Path for FAX files: The directory is the place where received Fax documents will be stored, and is also
used for temporary files such as converted Fax documents during transmission. If you don't specify a path
for Fax files then the Odyssey home directory will be used, which may make the Fax files rather hard to
manage (they can be rather large, and will fill up your hard disk quite quickly). We recommend that you
create a directory called "FAXRECV" in the Odyssey directory, then specify the full path to that directory
using this dialog field. The Odyssey INSTALL program will normally have created this directory for you.

Local station ID: Every Fax station must have an ID - it allows one FAX station to identify itself to another
when making or receiving a call (this is the ident you often see on the LCD display of a dedicated FAX
machine while it is sending or transmitting a document). The ID can be up to 20 characters long.
According to the FAX standard, this should consist solely of the digits '0'-'9', or spaces, however we have
found that all FAX machines we have tried calling so far are perfectly happy with the letters 'A'-'Z' also, so
you can try entering your company name, provided it fits in 20 characters and doesn't require anything
other than ASCII letters, digits or a space (it is ok to use lower case letters, because the FAX server will
automatically force them to upper case before transmitting the ID). If in doubt, stick to your international
phone number.

General options

Enable receive: If you would like to be able to receive Fax documents, then enable this option, and
Odyssey will answer incoming Fax calls whenever the Fax server is active. Note that you should set the
FAX receive directory first. Bear in mind that if you share your modem line with a phone, then it isn't really
a good idea to enable this option all the time, since voice callers are going to be somewhat surprised by
the Fax tones which greet them.

Track ring indicator (RI) signal: If you enable the Odyssey FAX receive feature then Odyssey must be
able to recognise when a call needs to be answered (note that your FAX "auto-answer" feature applies to
incoming data mode calls, not FAX calls). Odyssey has two ways of recognising that the phone is ringing -
one is to watch for "RING" messages coming from a Hayes compatible modem, and the other is to
monitor the ring indicator (RI) signal on the serial port. If you enable this option then the latter method is
used. The first method may be unreliable due to bugs in the modem firmware, however, the latter method
requires that your modem cable connects the RI signal to the PC.

Operating mode: Odyssey supports EIA Class I and Class II Fax modems. Normally Odyssey will check
your modem and decide for itself which controlling protocol is appropriate - Class I for class I-only
modems, Class II for class II modems and for modems which support both interface types. However, you
may prefer to force Odyssey to use one of the other protocols, eg. because your modem supports both
protocols and there is a modem firmware bug involved in the protocol which Odyssey would normally use.
Note that if you select a protocol which your modem does not support then Odyssey will ignore you, and
operate as if you had left this setting left on Auto.

Viewer resolution: Standard FAX resolution is 200 dpi horizontally by 100 dpi vertically. If you select

"Detail" on your Fax machine then that resolution is changed to 200 dpi both horizontally and vertically.
However, Odyssey normally displays either type of FAX on screen at 100 dpi in both dimensions, since
this allows you to see more of the Fax page at once; you would only get the full resolution when the page
is printed. You can use this field to force Odyssey to display the Fax at 200 dpi horizontally and vertically.

Class 1 options...

Reverse Tx bit order and Reverse Rx bit order reverse the order of bits in FAX bitmap bytes
transmitted and received from the modem. For an explanation of these options please read Fax Bit Order
Options. Do not modify these options unless you know what they do.

Class 2 options...

Reverse Tx bit order and Reverse Rx bit order reverse the order of bits in FAX bitmap bytes
transmitted and received from the modem. For an explanation of these options please read Fax Bit Order
Options. Do not modify these options unless you know what they do.

Rx trigger: In class II FAX modems, the receiver sends a flow-on signal to the modem, which tells it that
the PC is ready to begin receiving streamed image data. Unfortunately, different modem manufacturers
have implemented code according to different drafts of the proposed class II standards, and use different
characters for this flow-on signal. Most class II modems use DC2, but a few are known to require DC1.
You should not change this setting unless your modem manufacturer documents which signal is needed,
or unless you already know which signal is needed.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|Host Mode Dialog
The Setup|Host mode dialog is actually just one page of the Odyssey Configuration dialog, which is a
multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change
pages, just click on a white tab.

This setup section is used to tailor the Host Mode feature of Odyssey, which is necessary if you wish to
have Odyssey answer calls as well as make them.

Normal user password: The password to be used by normal (ie. unprivileged callers). A string of up to
20 characters can be entered. This level of protection allows users who know the password to gain
access to files and information stored in the default host mode directory, but does not allow access to any
other directory.

Privileged user password: The password to be used by privileged callers to your computer system.
Again, a string of up to 20 characters is expected. Privileged users are allowed to change directory, in
other words they have access to any file held on your system. You should therefore be extremely careful
to whom you grant privileged access, since even a well intentioned caller might damage vital system files
on your hard disk. Normally you yourself would be the only privileged caller.

Welcome message: This string is one of the first messages that a remote user calling the system will
see. The message may be up to 65 characters long.

Default directory for callers: This field holds the name of the host mode default directory. Normal callers
will have access to this directory only. If no directory is specified then the Odyssey directory is used
instead.

Enable Error correction for incoming calls: The fields in this panel control whether or not to enable
error correction for callers to the host mode, and if so, whether that means error correction only, or both
error correction and data compression. The options in this panel are relevant whether the error correction
is done by the modem, or by Odyssey with its internal software MNP feature. If error correction is enabled
then the WaitForCall() script command will enable the appropriate level of error correction for callers. The
panel contains three radio buttons, one of which may be selected. The radio buttons are:-

· Disabled - Error correction will be be disabled when Odyssey enters host mode.
· Enabled, but data compression disabled - callers to the Odyssey host will be permitted to use

error correction, but data compression will be disabled.
· Enable error correction and data compression - callers to the Odyssey host will be permitted to

use both error correction and data compression.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|Keyboard Macros Dialog
The Setup|Keyboard macros dialog is actually just one page of the Odyssey Configuration dialog, which
is a multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change
pages, just click on a white tab.

A macro is a stored string of characters which can be transmitted to the remote system with a single
command. They are a shorthand way of sending commonly used text strings. Transmitting a macro
should have exactly the same effect as typing each character individually from the keyboard except for
the interpretation of special characters within macros which is described below.

Odyssey allows up to ten macros to be stored for later use. You must however remember to save your
setup if you want stored macros to be remembered between sessions.

Not all characters within a macro will be transmitted literally, some have special meaning:-

| means send an End Of Line (EOL) sequence.
~ means "pause here for half a second".
^x With a letter this instructs Odyssey to send a control character, eg. ^H sends Ctrl+H or ASCII

8. With any other char the literal character is sent - use this to send special characters, eg. ^^,
^|, ^~.

^nnn nnn is a decimal ASCII code for a character to be transmitted. Always use exactly three digits.
For example, ^255 sends CHR(255), ^008 sends a backspace.

Use the Save button to make any changes permanent.

Once the macro has been created, you can then transmit it by typing ALT+x, where x is the number of the
macro. For example, ALT+1 would transmit macro one.

If you need to attach a macro to a specific key, or need more than ten macros, then you should look at the
keyboard definition feature of Odyssey (see the discussion of the Keyboard Remapping feature). The
macro feature just described is intended for simpler applications.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Configuration
Setup|Printer Dialog
The Setup|Printer dialog is actually just one page of the Odyssey Configuration dialog, which is a
multiple page tabbed dialog. The tabs are shown down the right hand side of the dialog - to change
pages, just click on a white tab.

The printer selection dialog allows the user to nominate the printer to be used by Odyssey, and also
provides access to the printer setup dialog provided by the printer device driver.

Printer selection listbox: Pull down the listbox and select the appropriate printer from the list presented.
The printers on the list are those defined in your WINDOWS.INI file.

Convert screen dumps to monochome: When you ask Odyssey to print the contents of the terminal
screen, Odyssey can do a color print (leaving it to your printer device driver to translate colors if and as
necessary), or Odyssey can convert the screen display to monochome itself before passing it to the
printer. Odyssey knows what should be readable inside this "terminal display bitmap", and so can
normally do a better job of monochrome conversion - if that is necessary. Enable this option if you want
Odyssey to do the conversion as described.

Click on OK to confirm changes to this dialog, and any other dialog pages you have visited. Click on
Cancel to cancel changes to all dialog pages you have visited. Click the Save button if you wish to make
your changes last beyond the current Odyssey session. Clicking the Help button displays this help topic.
Click on one of the tabs on the right side of the dialog to flip to another dialog page. The Pick Modem
button is available in all Odyssey configuration dialog pages, and is described separately.

Odyssey Dialogs
Terminal colors
One of the main tasks Odyssey has to perform is terminal emulation, ie. emulating the features of
particular text terminals. Most such terminals display monochrome text, and allow attribute effects to be
applied to text, such as underlining, reverse video, bold and blinking characters.

The original version of Odyssey was developed for DOS color text systems, in which such monochrome
attributes were not supported. Therefore, the DOS version of Odyssey mapped every possible
combination of the four attributes mentioned onto a different displayable color, and allowed the user to
edit that color mapping. So, when the host asked the terminal to display "bold" text, it might have
appeared on an Odyssey VT100 display as yellow on a blue background - and so on.

However, Windows™ has no such limitations; we could display bold and underlined text if we wanted to.
On the other hand, what was originally designed as a slightly dubious workaround has now become a
feature - many users have taken advantage of the DOS Odyssey behaviour to provide themselves with
colorful alternatives to the boring VT100 monochrome display they would otherwise be using when
connected to a local mini. So, even though it is no longer mandated by the hardware, the Windows
version of Odyssey still maps monochrome attribute combinations onto colors, and this dialog exists to
allow you to edit that color mapping.

The Terminal Colors dialog has three main elements.

· The Element listbox on the left displays the list of the sixteen possible combinations of the four
recognised monochrome text attributes. You can select any element of this list by clicking on it.

· The Colors panel on the right displays the complete range of possible color attributes to which an
element may be mapped. A box is drawn around the color which is mapped to the currently selected
Element. To change the color mapping for the selected element, simply click on a different color
combination in the Colors panel.

· The 'Sample Text' panel near the bottom of the dialog shows how a larger piece of text would look
with that foreground/background color combination.

Click on OK to confirm changes in this dialog, or click on Cancel to abandon any changes you have
already made. Clicking the Help button displays this help topic.

Odyssey Dialogs
Pick Modem
The Pick Modem dialog appears when you click on the Pick Modem button in any of the Odyssey
configuration dialog pages.

When you first installed Odyssey you were given a pick list of modems, and allowed to select the entry
corresponding to your particular modem brand. This allowed Odyssey to automatically configure itself with
the correct strings which control your modem.

Which is fine of course, until the day you come home with your shiny new high speed V62ter/ISDN
modem, and find that Odyssey is now configured with precisely the wrong strings for it.

This isn't really a problem. Just access this dialog and you will be given that list of modems again.
Choose the entry which corresponds to your new modem. It is likely that this list will become rather dated
over time, so look out for more up to date lists on your favorite BBS (the Odyssey file containing the list is
an editable text file called ODYSSEY.MDM), or keep in touch with your Odyssey dealer for updates.

Click on OK to accept the modem you have selected, or click on Cancel to retain your existing
configuration. Clicking the Help button displays this help topic. If you click on OK then many changes will
be made to fields throughout the Odyssey configuration dialog pages.

Odyssey Help
What is a Tabbed Dialog?
Odyssey has very many configuration options for you to manipulate - far too many options to fit on one
simple dialog.

The traditional way for a Windows application to behave, when it needs lots of data entered that won't fit
on one dialog, is to have a parent menu or dialog, and lots of nested dialogs. That sort of system is
extremely cumbersome to use, since it involves traversing up and down the dialog/menu hierarchy,
passing through dialogs you don't want to see, in order to get to the dialog containing the variable you
want to change. Even the sheer number of dialog windows appearing on the screen at once can lead to
confusion.

Odyssey adopts a strategy to replace this long winded interface which, although not yet traditional, is
becoming increasingly common. The tabbed dialog can be seen in many popular windows apps, including
the latest versions of Microsoft Word and Excel, and will be a standard feature of Window 95 (alias
Chicago).

The idea is for the parent dialog to have "tabs", like the thumb tabs in a personal organiser or in a
dictionary. To flip to a different page in the dialog you simply click on the appropriate tab. You can flip
between tabbed pages entirely randomly; eg. if you want to flip from the first tab to the third you just click
on the third tab - no need to visit the second tab at all, unless you particularly want to.

The Odyssey configuration dialog has its tab buttons down the right hand side. The gray tab indicates the
current page, just click on a white tab to move to a different page.

Odyssey Help
How Odyssey constructs the Dial Command
When you tell Odyssey to dial a number, Odyssey takes the dial prefix, appends the phone number from
the selected dialing directory entry, appends the dial suffix, checks for and expands any number prefix
codes, then sends the resulting dial command to the modem. For example:-

Dial Prefix = ATDT (select tone dialing)
Number = 012-345-6789
Dial Suffix = | (Ody symbol for newline)

so the resulting dial command is:-

ATDT012-345-6789|

which should cause a Hayes compatible modem to dial that number.

Those using Odyssey to dial out through a private telephone exchange normally have to prefix
every telephone number with a digit such as '9', which selects an outside line. Rather than inserting this
digit in front of every number in the dialing directory, you can put it in the dial prefix, eg. "ATDT9,". The
comma on the end tells a Hayes compatible modem to pause for half a second, which gives a typical
private exchange time to select the outside line.

Odyssey Help
Baud Rate Detection
When Odyssey sees the connect string from the modem (eg "CONNECT 1200"), it recognises that a
connection has been made, however it does not stop reading characters from the modem until it gets a
carriage return. While it does this, Odyssey is actually looking for the connect rate (eg. "1200", as in the
example shown).

If Odyssey knows the rate the modem actually connected at, as opposed to the rate at which Odyssey is
currently communicating with the modem, then it is possible for Odyssey to adapt to the actual connect
rate on each call, provided you enable the "Baud rate detection" option in the Setup|General dialog. The
purpose of this feature is to avoid any flow control problems which could arise if the terminal baud rate is
different from the modem baud rate. However, not all modems are happy to have the speed of the
terminal switch suddenly, after a connection has been established. The best way to find out is to try it.
Some modems do not support this feature at all, while others support it as an option which must be
enabled via an init string or by via switches on the modem itself.

Most modern high speed modems these days are designed to work best with a fixed data rate to
the terminal - if your modem supports hardware error correction and/or data compression then this is
almost certainly the case and you should disable baud rate detection, both in Odyssey, and in the
modem.

Odyssey Help
Odyssey and Error Correction
This help topic is here to explain why Odyssey needs error correction control strings in its Setup|Modem
Init Strings dialog.

The Setup|Modem Init String dialog allows you to define the strings used to control hardware error
correction in your modem. If your modem does not support any error correction then these strings should
be left blank, and software MNP should be enabled.

Some users who have evaluated Odyssey without the manual have been puzzled by these options - they
don't understand why it exists, particularly since other packages don't seem to have it; so a more in-depth
explanation seems to be required...

The reason these options exist in Odyssey is partly historical: Odyssey was one of the first comms
packages to implement MNP error correction in software. Being implemented in software gave the user
complete control over error correction, such as the ability to enable or disable error correction for
individual services, or to control the level of error correction/data compression to use with particular
services, or even with individual calls. This amount of control was, and is, very convenient for most users,
once they had discovered it was possible.

Then the market changed, and modems which offered hardware error correction and data compression
began to get much cheaper. Users could get a 20% speed advantage by moving to hardware error
correction, but on the other hand they lost the level of control they had got used to when error correction
was software only.

Naturally, Odyssey users wanted the best of both worlds - the performance of hardware error correction
with all the control afforded by error correction in software. However, to do this, Odyssey has to know
what strings to send to the modem to enable and disable error correction, or to select error correction with
or without data compression. Unfortunately, the de-facto standard Hayes modem control language does
not extend to error correction, so Odyssey must be told the correct strings for each modem. A modem
pick list feature was added to Odyssey so that the correct strings could be supplied for most popular
modems, but if your modem was not on that list, and you would like the control described, then you will
need understand what Odyssey requires, examine your modem manual, and provide the appropriate
command strings.

The dialing directory was also changed at the same time. There used to be a "Software MNP" field in the
dialing directory, which you ignored if you used hardware error correction. Now that field has become the
"Error Correction" field, which you should set appropriately regardless of who handles the error correction.
When it comes time to establish a connection, and error correction is requested, the Odyssey dialer will
look at the configuration settings here to see whether software MNP is to be used, or whether hardware
error correction is available and preferred.

Odyssey Help
The Strip Parity Bit Feature
When a particular remote service is dialed directly, it is normally easy to find out what parity setting that
service requires. However, sometimes a remote service is accessed indirectly using a packet switching or
other low cost network (such as Tymnet or DialPlus), and this network may require a different parity
setting than the service itself. For example it is common for these networks to require a seven bit even
parity setting, while most host services work best with an eight bit no parity setting.

You could easily configure Odyssey for seven bits even parity using the Setup|Comms dialog or the
dialing directory, and this would work perfectly well - except for file transfer, since most file transfer
protocols expect a full eight bits per byte of data. On the other hand, if you configure Odyssey for eight
bits no parity then you will see spurious semi-graphic characters on the terminal screen while connected
to the network, because some of the incoming characters will have their eighth (parity) bit set.

You can resolve this dilemma on many systems by setting Odyssey to eight bits no parity so that file
transfer can work, and also enabling the Strip Parity option in the Setup|Terminal dialog, which ensures
that you do not see the funny graphic characters. Alternatively you can enable or disable parity bit
stripping for individual services using the dialing directory.

Note that when this option is enabled, Odyssey will only strip parity bits from characters displayed on the
terminal screen, so this will not upset file transfer.

The only drawback to using this feature is that deliberate use of IBM semigraphic characters is also
prevented (characters with codes greater than 127). This mostly means that you cannot view certain BBS
logo displays in all their glory, which is not usually a damaging limitation. In any case, these fancy logins
tend to occur on small bulletin board systems, where the packet switching network problem is not an
issue.

The Odyssey ANSI emulation works best when parity bit stripping is not enabled, since this
emulation is actually designed to make use of the full eight bit PC (OEM) character set. If you find this to
be a problem then you will also likely find that you have no need of ANSI emulation with that service
anyway. In that case you should either switch to VT100 emulation, or even better use TTY emulation,
since there is little point in having Odyssey emulate a terminal whose features are not required.

Odyssey Help
Fax Bit Order Options
You will notice that many of the options in the Setup|Fax dialog have to do with "bit order": The EIA Class
I FAX specification fails to specify whether data bytes transferred from PC to modem are transmitted to
the remote modem least significant or most significant bit first - and since the FAX protocol (CCITT T.30)
is bit oriented this is a rather unfortunate omission. We expect most manufacturers will assume the norm
for asynchronous modems, which is that least significant bits are transmitted first. However, since it is
unspecified, the modem manufacturer would be quite entitled to assume the opposite case. The class I bit
order options allow you to adapt the FAX server for your modem - however the defaults should be correct
in most cases.

Bit order also rears its head in class II, but for a different reason. We know of at least one version of the
Rockwell FAX modem chipset which uses the wrong bit order in class II receive mode - the opposite bit
order to that documented by the Rockwell data sheet and which is used in class II send mode. This
problem can again be fixed by setting the appopriate bit order option to "Reversed".

DO NOT CHANGE THE BIT ORDER OPTIONS UNLESS YOU KNOW EXACTLY WHAT YOU
ARE DOING. These options affect only what a FAX looks like when it is viewed - it has no affect whatever
on the FAX send/receive protocol, and so is not a general panacea with which to fiddle whenever you
have problems receiving or sending a FAX.

Odyssey Help
Using Odyssey Windows
Select one of the user guide topics listed below:

Odyssey and the Windows MDI interface
Odyssey Configuration
The Terminal window
The Dialing Directory
The Text editor
The Directory Viewer
The Bitmap viewer
The FAX server
The Archive Viewer

Using Odyssey
Odyssey and the Windows MDI interface
Odyssey is a Windows Multiple Document Interface (MDI) application. Instead of displaying all kinds of
things at different times in one window, it displays different things in different windows, and you can have
several such windows active at the same time. In order to work with the contents of a particular window
you first have to select it (the currently selected - or active - window is easily identified because it is
painted using a blue caption, while inactive windows are painted with a white caption). You can select a
window by clicking it with the mouse, or you can select the window by choosing it from the list given in the
Window menu.

Odyssey supports the Windows MDI keyboard conventions for switching between windows (eg. Ctrl+F6),
and also implements its own conventions inherited from Odyssey for DOS, so that users moving to
Odyssey from the DOS version can continue to use the keys they are familiar with. The following keys
may be used in any Odyssey MDI child window :-

F5 - Maximizes (zooms) the currently active window, or restores the window if it was already
maximized.

F6 - Switches to the next window (same as Ctrl-F6).
Alt+F3 - Closes the current window (same as Ctrl+F4).

Although this type of program interface is called MDI (where D means Document), Odyssey does not use
child windows solely for displaying documents, at least not in any conventional sense of the word.
Instead, Odyssey is divided into multiple subsystems, each of which performs a separate but useful
function, and each of which uses a specialised MDI child window to display information relevant to that
function.

The following is a brief overview of the different types (classes) of document window which Odyssey
currently uses. Later sections of this user guide give more detailed information about the commands and
features of specific window types. :-

Terminal window - Unlike some other packages which dedicate the entire main application
window, Odyssey directs all terminal emulation output to a child window, not to
the full screen or main application window. This allows you to move the
"terminal" display around the screen, just like any other window. You can of
course maximize the terminal window if you actually want it to occupy the
whole screen. There is only ever one terminal window in existance, and it
cannot be closed (though it can be minimized). The terminal window is created
automatically when Odyssey starts up. The position and
minimized/maximized/normal state of the terminal window is saved between
Odyssey sessions.

Text editor window - You can have several text editing windows open at any time - open a text editor
window by choosing File|Open or by clicking the edit toolbar button. The text
editor in Odyssey can handle text files of any size (ie. there is no 64k limit).
Cutting and pasting of text between editors is permitted, as is cutting and
pasting text to and from other applications via the Windows clipboard. The text
editor may be configured to use either CUA or "native" Wordstar™ compatible
commands (the latter for the benefit of former users of Odyssey for DOS). The
editor supports normal editing operations, block commands, search and
replace etc, plus of course Windows style text selection using the mouse or
shift-<movement key>.

Directory viewer - A window of this type looks very much like a directory view in the standard
Windows File Manager application. A directory tree appears on the left, a list of
files on the right, and a row of drive buttons at the top. Why not just use file

manager you may ask?. Well, the Odyssey directory view exists in order to
allow you to perform Odyssey specific functions on the list of selected files -
such as view selected text files with the Odyssey text editor, view GIF™ or
JPEG files with the Odyssey bitmap viewer, or upload a batch of selected files
using Odyssey Zmodem file transfer. While all of this could have been
implemented by making Odyssey a drag and drop client (in fact, we allow that
too!), it turns out to be more convenient to have the feature built directly into
Odyssey, at least in our opinion.

Bitmap viewer - If you double-click on a GIF,BMP or JPEG file while using the directory viewer,
Odyssey loads the image and displays it using a bitmap viewer window. This
window allows you to print the bitmap, copy it to the clipboard, and so on.
Odyssey also displays a GIF or JPEG in a bitmap viewer if you are
downloading the GIF/JPEG file from a BBS, and you have enabled the "View
GIFs/JPEGs while downloading" option in Setup|File transfer. The Odyssey
FAX server also uses a bitmap window to preview FAX images you are about
to send, and to display FAX files you have received. (Note: We plan to add the
ability to view other bitmap formats, such as PCX and TIFF, using our bitmap
viewer. This may have been added by the time you read this - please check the
README.TXT file in the Odyssey directory to make sure).

FAX server window - The FAX server window is used when the FAX server is active - it displays a list
of FAXes in your FAX-receive directory. You can view or delete a FAX in the list
by clicking on it, and then selecting the appropriate menu option.

File transfer progress - A file transfer progress window looks like a dialog box, and is only displayed
during a file transfer, to show you the progress of that file transfer. The fact that
it isn't an ordinary dialog is important, since it means that you can switch to
other child windows while a file transfer is in progress (eg. to a text editor or
directory viewer). If it was a normal modal dialog you would be frozen out of
other windows until the transfer was completed.

Using Odyssey
The Terminal window
The Terminal window is where all characters received from the serial port are displayed. It is in this
window that terminal emulation takes place, and it is this window which must be active if you intend
characters that you type to be transmitted through the serial port.

The terminal window is unusual in a number of ways .

First, no matter what size you make the terminal window, it always contains the same number of rows and
columns. If you drag the window to a new size (or maximize it), the visible contents of the window do not
change, because Odyssey has adjusted the font size in order to keep the number of rows and columns
constant. Obviously, this is done because all the terminals being emulated also have a constant number
of rows and columns.

Second, Odyssey does not allow you to make the terminal window any old size you like. This is because
of the font sizing mentioned in the previous paragraph. When you change the terminal window size
Odyssey changes the font size to keep the rows/columns the same. However, a font of precisely the right
size is not always available, so Odyssey chooses the closest sized font available, calculates the
dimensions of the window, assuming 80 columns by 25 rows with the new font, and then "snaps" the
window to that new size.

In fact, Odyssey does a little more than that. If it simply snapped to the closest font size, you may have
found that it snapped back to the terminal size you were using previously, which would have been rather
annoying. Instead, Odyssey looks at what you tried to do, and then tries its best to satify you. If you made
the terminal window a little larger, then Odyssey looks for a font which is a little larger than the font it is
already using, and snaps the window to the appropriate size for that font. Likewise, if you made the
terminal window a little smaller then Odyssey looks for a slightly smaller font and changes the window
size to suit. If you make the window a lot larger or smaller, then Odyssey chooses the largest available
font, or the smallest (as appropriate), and again changes the terminal window size. Maximizing the
terminal window always causes the terminal window to use the largest sized font it has available, of those
which are suitable for your display resolution.

The final special feature of the terminal window is again related to the font sizing problem. Odyssey has
very specific requirements for the font which it uses in the terminal window. First, it must be a fixed width
font (all the text terminals Odyssey emulates use fixed width fonts). Second, the font must use the OEM
(IBM PC text mode) character set, mostly because ANSI emulation requires the OEM character set. In
PRESTEL emulation mode the font is even stranger - it must use the PRESTEL character set, including
those funny mosaic characters, which it certainly isn't going to find in any standard Windows font, even a
Windows OEM font.

Furthermore, Odyssey requires that the font used must be available in a nice range of sizes, otherwise
the font sizing feature described above will not work very well.

Odyssey cannot depend on a standard Windows installation satisfying these specialised font
requirements, which means that we had to bundle a suitable font selection with Odyssey. These fonts are
stored in the file ODYPC8.FON (PRESTERM.FON when PRESTEL emulation is in use), and these font
files must reside in your Odyssey directory. Note that the Odyssey terminal window always uses one of
these specialised fonts - you can override the default font selection in other Odyssey windows, but not in
the terminal window.

The Odyssey terminal window is used to emulate a scrolling text terminal, thus its performance is heavily
dependant on the scrolling performance of your video display card. A "Windows accelerator" type card is
very much recommended for this application. However, Odyssey provides a number of options in Setup|
Terminal emulation which may be used to improve performance, if necessary. The same configuration
dialog can be used to control other terminal window parameters, such as the colors used when mapping

monochrome video attributes to the color display.

Notes: The Review editor and text logging features record text which has been displayed in the terminal
window. Also, if an Odyssey script uses the Write() command, that output goes to the terminal window.
This means that scripts can send configuration control sequences to terminal emulations via the Write()
command, and also supplement text capture files etc.

Using Odyssey
The Dialing Directory
The Dialing Directory is a central repository where all the details are kept about host services you might
want to call - what modem speed to use, what parity,terminal type, what logon script (if any) to run,
whether to turn on text logging - and so on. The dialing directory is also your starting point when you want
to make a call. Having entered these details about a service you can make a call by simply highlighting
that services entry, and clicking the Dial button (or double-clicking the entry).

Now, there are some macho types around who don't see the point of a dialing directory. A user can get the
modem to dial manually any time he likes by typing a simple AT<phone number> command, so why
doesn't he? Why do we need some complex dialog to take place before we can dial a number?

The best way to understand clearly why the Dialing Directory exists, is to imagine how Odyssey would be
used if the dialing directory didn't exist! (in fact, the very first DOS version of Odyssey didn't have a dialing
directory, and was used in precisely the following way).

How do you make a call when you don't have a dialing directory? Well, as mentioned, the usual way is to
simply type a modem dial command directly at the terminal keyboard, for example on a Hayes compatible
modem you would type ATDT12345678<enter>. Your modem will dial, make a connection, and suddenly
the terminal screen will be filled with scrolling text.

So far so good...

...except that you should have set the comm port speed to 19200 bps before the call, and you also forgot
to change the comm port settings to eight bits no parity (it was set to seven bits even parity after the
previous call). Also, didn't you intend to turn text logging on for this service? - and what about terminal
emulation - doesn't this service expect you to be using VT100? - and anyway, are you sure you dialed the
right number?

It really is a lot of hassle to remember all this stuff, and a real pain having to go through this checklist
manually before we can finally make a call - so why don't we write a script to take care of it? (this was the
recommended procedure in that very first version of Odyssey). Well, writing that script will certainly do the
trick, if you are confident enough in your programming skills with the script language - a big "if" for most
novice users.

So now you see; the dialing directory is nothing more or less than a handy place to jot down information
on how to set up Odyssey correctly for a bunch of different host services - a place where that information
won't get lost. And the real bonus is that when it comes time to call the service, Odyssey does all the work
for you. As soon as you select a service from the directory, Ody looks at the settings in the dialing
directory entry, dials the number, and automatically makes the appropriate changes to the setup menu -
and it does so at the best moment for each change (some before the number is dialed, some after the
connection is made).

So, you should not be confused by the fact that the options in a dialing directory entry often appear to
duplicate similar looking items in the setup menu. There is only one "Baud Rate" setting in Odyssey - the
one in the setup menu. The "Baud rate" field in the dialing directory entry for a service simply says what
the setup menu baud rate should be changed to when you ask Odyssey to call that service. The same
goes for all the other settings you find in a dialing directory entry.

See also, the Dialing Directory Dialog.

Using Odyssey
The Text Editor
See also: Text Editing Commands

Odyssey provides a powerful built in text editor which is not based on the standard windows edit control.
The main differences between the Odyssey editor and an edit control are:

· The Odyssey editor has no 64k limit on the size of a file which can be edited. Thus, you can use the
Odyssey editor to examined a captured text log file, no matter how large that file is.

· The Odyssey editor gives you the choice of whether you want to use CUA editing commands, or
"native" Wordstar™ compatible commands, which might be preferred by those moving to Windows
Odyssey from the DOS version.

You should also find the Odyssey editor to be much faster than the standard edit control, especially where
text searches are concerned, and when processing larger files.

Although we have made every effort to make text editing with the Odyssey editors familiar to those used
to normal windows controls, there are inevitably some minor differences. These differences are
deliberate, where we have decided that the standard operation represents a serious design flaw:-

· In a standard Windows edit control, if you use a scroll bar to skim over the text, the caret does not
move to remain within the visible region of the file. Thus, if you then decide to do some editing at the
point you've skimmed to, and you start by touching any of the arrow keys, then the edit control will
jump back to where the caret was, losing your place in the file where you had scrolled to. Odyssey
does not follow this example - like any normal text editor, the caret in the Odyssey editor moves to
remain in view as you scroll, no matter how you scroll (ie. regardless of whether you use the arrow
keys or scroll bars).

· In a standard Windows edit control, if you have marked a section of text and then move the cursor,
the selection is lost. Odyssey does not follow this convention. A block of text stays selected until you
tell the Odyssey editor to remove the selection.

· In a standard Windows edit control, if you have marked a section of text and then type any character,
the selected text is deleted and replaced with the character you typed. This can come as rather a
shock to someone who had selected the block in order to print it, and then noticed a minor typo to
correct first. Needless to say, Odyssey does not follow the standard edit control convention. Text is
deleted when you explicity enter a block delete command, and not otherwise.

You can have up to ten independant text editing windows opened at any time, plus one special window
(the Review Editor window) which Odyssey uses, when so commanded, to display text which has scrolled
off the terminal display. Each window can be sized independantly, dragged to new positions etc. Normal
edit windows may be used to prepare text messages offline, or for editing script source files, or for
viewing any text file you like.

Default modes for all editors can be controlled using the Setup|Editor configuration section. This allows
you to set your preferred defaults for tab size, insert or overwrite mode, right margin position, and so on.

All edit windows are normally configured to use CUA compatible editing commands, supplemented by
Wordstar keystrokes for those functions which CUA does not define. However, you can force the editor to
use pure WordStar™ commands by setting the appropriate option in the Setup|Editor dialog.

To create text while in an editor you simply press any of the letter or number keys on the keyboard. Any
letter you type will appear to be inserted into the text at the cursor position. When the cursor reaches the
extreme right hand side of the text window then the text displayed will scroll sideways. Don't panic! Your

text is not destroyed, it is merely not visible since it has passed outside the boundary of the text window.
In a similar fashion, if you move the cursor down past the last line, or up past the first line in the text
window then the text will be scrolled up or down as required to keep the cursor within the boundaries of
the display.

Special editor functions are performed using the remaining keys on the keyboard or by means of control
key combinations (commands which use a combination of the Ctrl key and another letter). The reason for
the duplication of several commands is that some people who are touch typists prefer not to move their
hands from the main keyboard area, while others prefer a simpler, single keystroke command where
possible. The description of commands which follows will use abbreviations such as "Ctrl+X" for control
commands, which means that you should hold down the Ctrl key while you press the X key.

As mentioned above, Odyssey by default uses CUA editing commands. However, the basic CUA
command set is extended with a large number of WordStar compatible editing commands, so it will be
useful to understand how WordStar style commands are structured (those already familiar with WordStar
should skip this section).

WordStar commands are mnemonic because of their relative positions on the keyboard, and seldom
because of the letter on the keytop itself. For example, the standard cursor movement commands use the
E, S, D and X keys - hardly easy to memorise if you look at the letters, however when you look at how
these keys are grouped on a standard PC keyboard:-

Then you may not be surprised to learn that Ctrl+E moves the cursor up, Ctrl+S moves the cursor left,
Ctrl+D moves the cursor right, and so on.

NOTE for CUA fans: Don' t worry: these are standard Wordstar keys, supported for the benefit of
Wordstar devotees, and provided in addition to the obvious choices for moving the cursor around on a PC
- the arrow keys). Studying them (even briefly) does however lead to a better understanding of the overall
structure of the WordStar editing commands, if you ever want to use them.

Other cursor movement commands can be arrived at by prefixing the appropriate letter with the Ctrl+Q
(Quick) command. For example, Ctrl+Q E (type Ctrl+Q, release, press E), will move the cursor to the first
line in the text window, and Ctrl+Q X moves the cursor to the last line. Ctrl+Q S moves the cursor to the
first position on the current line, while Ctrl+Q D moves it to the last position. Other commands group in a
similar fashion, and once you recognise these basics, most WordStar commands should be significantly
easier to remember.

All edit windows show the name of the file being edited in the window caption. All editors also share a
common "status line" at the bottom of the Odyssey MDI desktop area, which gives you some basic
information about the file you are editing. For example it tells you the current line and column number of
the current cursor position, as well as the status of the insert, indent and word wrap toggles. Insert mode
means that letters typed are inserted into the text, with remaining characters on the line moved aside to
make room. The opposite of insert mode is overtype mode, in which characters typed replace or
"overtype" characters previously at that position.

One other feature of the status line is a "modified" legend which appears when the text has been altered.
This tells you that the file will need to be saved before leaving Odyssey if you do not want the changes to
be lost. Odyssey will of course remind you of this anyway when you close the edit window or decide to
exit the program, if you have not saved the file in the meantime.

Odyssey Text Editor
Editing Commands
Please choose one of topics below for information on commands falling into the selected category.

Cursor Movement Commands
Insert and Delete Commands
Search and Replace Commands
Block Commands
Text Formatting Commands
Mode Control Commands
Miscellaneous Commands

See also: Text Editor Overview

In the text editor documentation, "cursor" refers to the familiar text cursor (or caret), and
not to the mouse pointer.

As text is received from the remote computer it is stored in the review editor buffer, and when the buffer is
full the oldest 2000 characters are thrown away. The review buffer therefore represents a "window" into
the current Odyssey session, covering the most recently received 30k of text. Since the Review editor is
intended primarily for viewing purposes only, it does not feature commands for loading and saving files.
You can however mark blocks and write them to disk, a feature which allows you to cut and paste
sections of text between editors. You can also print a selected block using the "Print Block" command. All
of these commands are described fully, later in this help topic.

Odyssey Text Editor
Movement commands
Commands are provided which allow you to move the cursor by one character position left, right, up or
down. You can also move left or right one word at a time, move to the top or bottom of the current window
or document, or you can move up or down the document one page at a time. At no time will you be able
to move the cursor outside the boundary of the current display window, neither will you be able to move
the cursor past the first or last lines in the document. The following paragraphs describe each of the
cursor movement commands.

Character Left (Native) [Ctrl+S or ¬]
Character Left (CUA) [¬]

This command moves the cursor one character position to the left unless the cursor is already in column
one, in which case this command will do nothing. The cursor will not wrap around to the preceding line.

Character Right (Native) [Ctrl+D or ®]
Character Right (CUA) [®]

This command moves the cursor one character position to the right. If the cursor was already at the
extreme right of the display window then the text will scroll left. The cursor does not wrap around to the
following line.

Line Down (Native) [Ctrl+X or ¯]
Line Down (CUA) [¯]

Moves the cursor down one line in the current column, scrolling the window as necessary to keep the
cursor within the display boundary. This command does nothing when the cursor is already at the last line
in the document.

Line Up (Native) [Ctrl+E or]
Line Up (CUA) []

Move the cursor up one line in the current column, scrolling the window as necessary to keep the cursor
within the display boundary. This command does nothing when the cursor is already at the first line in the
document.

Word Left (Native) [Ctrl+A or Ctrl+¬]
Word Left (CUA) [Ctrl+¬]

This command moves the cursor to the start of the nearest word to the left. If the cursor was on the first
word of a line then the cursor moves to the beginning of the last word on the previous line (in other words
the cursor wraps around). This command does nothing if the cursor was already on the first word in the
document. As far as the editor is concerned, a "word" is any sequence of letters or digits separated by
spaces or punctuation characters.

Word Right [Ctrl+F or Ctrl+®]

This command moves the cursor to the start of the nearest word to the right. If the cursor was on the last
word of a line then the cursor moves to the beginning of the first word on the following line. This command
does nothing if the cursor was already on the last word in the document.

Left on Line [Ctrl+Q S or Home]

Moves the cursor to the extreme left of the current line (column one), restoring the display window if it had

previously been scrolled left.

Right on Line [Ctrl+Q D or End]

Moves the cursor to the extreme right of the current line (one character position beyond the last character
on the line), for example, if the current line is 10 characters long, then the cursor moves to column 11,
ready for new characters to be appended. If the line is longer than the display is wide, then the display
window will scroll left as necessary to keep the cursor within the display boundary.

Page Up (Native) [Ctrl+R or PgUp]
Page Up (CUA) [PgUp]

Moves the cursor up one page in the current document, a page being defined by the current height of the
display window. The text forming the previous page is displayed. The cursor position does not move
unless there are no previous pages, in which case the cursor moves to column one, line one in the
document.

Page Down (Native) [Ctrl+C or PgDn]
Page Down (CUA) [PgDn]

Moves the cursor down one page in the current document, a page being defined by the current height of
the display window. The text forming the next page is displayed. The cursor position does not move
unless there are no following pages, in which case the cursor moves to column one of the last line of the
document.

First Line in Window (Native) [Ctrl+Q E or Ctrl+Home]
First Line in Window (CUA) [Ctrl+Q E or Ctrl+E]

Moves the cursor to column one of the first line in the display window.

Last Line in Window (Native) [Ctrl+Q X or Ctrl-End]
Last Line in Window (CUA) [Ctrl+Q X]

Moves the cursor to column one of the last visible line in the edit window.

First Line in File (Native) [Ctrl+Q R or Ctrl+PgUp]
First Line in File (CUA) [Ctrl+Q R or Ctrl+Home]

Moves the cursor to the column one of the first line in the document, and causes the text of the first page
in the document to be displayed.

Last Line in File (Native) [Ctrl+Q C or Ctrl+PgDn]
Last Line in File (CUA) [Ctrl+Q C or Ctrl+End]

Moves the cursor to the column one of the last line in the document, and causes the text of the last page
in the document to be displayed.

Beginning of Block [Ctrl+Q B]

Moves the cursor to the first character of a marked (selected) block of text. If no block is currently marked
then this command does nothing. Other block commands are described in a later section.

End of Block [Ctrl+Q K]

Moves the cursor to one character position beyond the last character of a marked block. If no block is

currently marked then this command does nothing.

Goto Line [Ctrl+Q G]

This command allows you to quickly jump to a specific line number within the current document. A dialog
prompts you for the line number the editor should jump to.

Odyssey Text Editor
Insert and Delete commands
These commands allow you to control whether typed characters are inserted into the text or overwrite
existing text, insert line breaks, and also allow to you delete characters, words, lines or blocks.

NOTE: Characters, lines or blocks once erased cannot be recovered. Be especially careful of holding any
control key down for too long as the PC keyboard "auto-repeat" feature may result in you erasing more
than you intended.

Insert/Overtype Toggle (Native) [Ctrl+V or Ins]
Insert/Overtype Toggle (CUA) [Ins]

This command is used to toggle the editor between insert and overtype modes. The legend "Insert" will
appear on the editor status line when the editor is currently in insert mode, or else this word will be
"Overtype" when you are in overtype mode.

Characters typed while the editor is in insert mode are inserted into the document at the current cursor
position, with any characters on the line at and to the right of this position being shifted further right to
make room. The cursor then advances to the right, ending up on the same character it was on before the
insertion.

In Overtype mode the character typed replaces the character previously at that cursor position; the
character overtyped is lost. The cursor then advances to the next column.

Insert Line (Native) [Ctrl+N]
Insert Line (CUA) (not available)

This command inserts a line break at the current cursor position, without moving the cursor. Another way
to insert a line break is simply to press the <Enter> key, however that operation is different in that the
cursor moves to the beginning of the new line.

Insert Tab [Ctrl+I or ®|]

This command moves the cursor to the next tab position. The editor supports several tabbing modes (the
mode being selected in the Setup|Editor dialog. :-

The editor can use Smart Tabs or Fixed Tabs. Smart tabbing means that when you press the tab key,
the editor examines the line above the current line, and aligns the cursor with the next word on that
previous line. This is extremely useful when laying out tables. Fixed tabs are your usual fixed-interval tabs
- the default interval being eight columns, though this can be changed in the Setup|Editor dialog.

The editor can also use Hard Tabs or Soft Tabs (note that this option is independant of the Smart or
Fixed tabs feature). In Hard Tab mode tab intervals are filled with actual tab characters (ASCII 9),
whereas in soft tab mode the tab interval is filled with spaces. Hard tabs make the text file smaller, but
may create formatting problems if you import the text into an editor that assumes a different tab interval.
The Hard/Soft tab option only affects what Odyssey does when you insert a tab in the Odyssey editor -
selecting soft tabs does not prevent Odyssey interpreting tab characters correctly when it reads in a
foreign ASCII file. Note: the Setup|Editor dialog refers to this feature as the "Tab Fill Character". If the fill
character is Tab then you are using hard tabs, if it is space then you are using soft tabs. The editor
options menu contains a checkable "Hard Tabs" item (if this item is not checked then you are using soft
tabs).

If this command is used in insert mode then the text at and to the right of the current position will be
shifted to the nearest tab stop to the right. In overtype mode the cursor is moved, but the line contents are
not affected.

Insert Control Character [Ctrl+P]

If you need to insert a control character into the text (for example to embed a form feed command for the
printer), then at first glance you may decide that this is impossible, because when you type Ctrl+L (the
formfeed character), for example, then the editor interprets this key as an editor command instead of
inserting it into the text. To get around this problem you first type Ctrl+P, which tells the editor that the
next character you type is to be regarded as a character to be inserted, and not as an editor command.
Therefore, to insert your formfeed character you would type Ctrl+P followed by Ctrl+L.

Delete Character [Ctrl+G or Del]

This command deletes the character at the current cursor position. Characters on the line to the right of
this position are moved left to close the gap.

Delete Character Left [Ctrl+H or BackSpace]

This command deletes the character to the left of the current cursor position, most useful if you have just
made a typing error. The keytop on the backspace key sometimes says BackSpace, and it sometimes just
has the symbol ¬. In the latter case you should not confuse this key with the left arrow key, which merely
moves the cursor to the left (non-destructively). The backspace key is located on the main section of your
keyboard, immediately above the <Enter> key (¿).

Delete Word [Ctrl+T]

This command deletes the word at the current cursor position. If the cursor is in the middle of a word then
only those characters at and to the right of the cursor are erased. If the cursor is on a space between
words then spaces are removed up to the next word or punctuation mark. If the cursor was on a
punctuation character then only that character is removed. Characters remaining on the line are shifted
left to close the gap.

Delete Line [Ctrl+Y]

This command causes the current line to be removed, with remaining lines in the document being moved
up to close the gap. Lines once deleted are lost.

Delete Remainder of Line [Ctrl+Q Y]

Erases all characters from the current cursor position to the end of the current line. Characters deleted
are lost.

Delete Block (Native) [Ctrl+K Y]
Delete Block (CUA) [Ctrl+K Y or Ctrl+Delete]

Deletes the currently marked block (if no block is marked then this command does nothing). Text following
the deleted block is moved to close the gap. Block commands are described fully in a later section.

Copy to Clipboard (Native) [CTRL+Insert]
Copy to Clipboard (CUA) [Ctrl+C or Ctrl+Insert]

Copies the currently marked block to the Windows clipboard. This may then be pasted into another edit
window inside Odyssey, or into an edit control in another application.

Cut to Clipboard (Native) [Shift+Delete]
Cut to Clipboard (CUA) [Ctrl+X or Shift+Delete]

Copies the currently marked block to the Windows clipboard, and then deletes the block. The cut block
may then be pasted back into the current edit window, into another edit window inside Odyssey, or into an
edit control in another application.

Paste from Clipboard (Native) [Shift+Insert]
Paste from Clipboard (CUA) [Ctrl+V or Shift+Insert]

If the clipboard contains text placed there by Odyssey or another application then this command allows
you to paste that text into the current file at the current cursor position. The pasted block then becomes
the new "current" marked block.

Odyssey Text Editor
Search and Replace Commands
These commands allow you to search for a given sequence of characters in the text, and optionally to
replace it with another sequence of characters. Several control options are provided.

Find String [Ctrl+Q F]

This command allows you to search for any occurrence of a string of characters in the current document.
The Find String dialog is displayed, prompting you for the string to find, the string you last searched for
being offered as a default (blank if there was no previous search), and showing current values for several
search options. See the description of the Find String dialog for more detailed information on these
options. You should make any necessary changes to the dialog, then press <Enter> or click on OK to
perform the search.

If the requested string was found, then the cursor will be moved to a point immediately after the string (if
the search direction was forward), or on the start of the string (if the search direction was backwards).

Find and Replace [Ctrl+Q A]

This command is used to search for a string of characters and then replace it with another string. This
command is very similar to the Find command described above, except for the additional prompt in the
Find and Replace dialog for the replacement string. There are also a couple of extra options used when
replacing text - see the description of the Find and Replace dialog for further details.

Repeat Last Find/Replace [Ctrl+L]

This command repeats the last Find String, or the last Find and Replace, whichever was done most
recently. For example, if a Find and Replace was used last then another Find and Replace will be
performed.

Odyssey Text Editor
Block Commands
Block commands allow you to mark out a segment of text in order to apply an operation to that entire
segment (block). For example after marking a block you can then choose to delete, copy, move or print
that block. You can also cut or copy the block to the clipboard (or write the block to disk) in order to paste
it into another editor, or another application, and you can read a file from disk and merge it with the
current file, in which case the merged text becomes a new marked block in the current document.

Marking Blocks the CUA Way

The Odyssey text editor supports the WordStar™ style of marking blocks. However, it also supports the
CUA style of text selection which you may find more convenient in many ways. Note that the "CUA style"
of block marking is available regardless of whether the editor is operating in CUA or Native command
modes. The following is a list of the various CUA-standard ways to select (mark) a block of text.

· By selecting with the mouse. As in any text control in a Windows application, you can select text by
pointing and clicking where you want the selected region to begin, and then dragging the mouse
(while holding the left mouse button down) to the place where the selected region should end. The
selected block grows in size as you move the mouse around. Note that the "end" of the selected text
can be before or after the starting point.

If you move the mouse outside the boundaries of the edit window while selecting text, the editor will
scroll the text window in the direction this indicates. For example, if you move the mouse to below the
text window then the text window will scroll up. Similar things happen if you move the mouse to the
left, right or above the edit window boundary.

· By "double-clicking" with the mouse. If you double click on any word in a document, that word is
selected (marked as the current block).

· Using Shift+<movement key>. Editor movement commands are described in another section of this
help guide. However, you should know that if you hold down the Shift key while you type any of the
listed movement commands, then the text cursor is moved as documented, and all the text from the
starting point to the new cursor location is selected (or deselected if it was selected already). You can
apply several of these Shift+movement commands in sequence, to "grow" or "shrink" the region of
selected text.

Note however that this feature only works with single-keystroke movement commands, ie.
Shift+Ctrl+Home works (Shift+Ctrl+PgUp in WordStar mode), but holding down Shift while you type
Ctrl+Q R does not work.

Every time you mark a new section of text, any previously selected text is automatically deselected. You
can also deselect text by clicking with the mouse anywhere within the boundary of the edit window.

Other sections of this help topic describe the alternative, WordStar method of block marking.

Mark Start of Block [Ctrl+K B or F7]

This command is used to tell Odyssey where you want a new block to begin. No physical marker appears
in the text, however the entire block will be highlighted once you have marked both beginning and end (in
either order). Once a block is marked and highlighted it may be the subject of other block commands such
as move, copy or delete block.

Mark End of Block [Ctrl+K K or F8]

This command is used to tell the editor where you want a new block to end. No physical marker appears

in the text, however the entire block will be highlighted once you have marked both beginning and end (in
either order).

Mark Word [Ctrl+K T]

This command may be used if you wish to mark a single word as a block so that it may be copied or
moved. Alternatively, you can mark a word by double-clicking it with the mouse, or by typing Shift+Ctrl+®
(although the latter command is slightly different - it marks from the cursor position to the end of the
word).

Mark Line [Ctrl+K L]

This command may be used if you wish to mark the current line as a block so that it can be copied or
moved.

Hide/Display Block [Ctrl+K H]

When a block is marked and highlighted, you may un-highlight it using this command. However, the editor
does not forget where the block markers were, so typing this command again will cause the block to
become visible once more. The hide block command is most commonly used after a move or copy block
operation, as this leaves a highlighted block at the destination position. If you intend no further operations
on that block then this command will un-highlight it.

Copy Block [Ctrl+K C]

Makes a copy of the currently marked and highlighted block at the current cursor position. The new block
then becomes the currently marked block. Attempts to copy a block onto itself are ignored.

Move Block [Ctrl+K V]

Moves the currently marked and highlighted block to the current cursor position. The block remains
highlighted at its new position. Attempts to move a marked block into the highlighted area (ie. onto itself)
are ignored.

Delete Block (Native) [Ctrl+K Y]
Delete Block (CUA) [Ctrl+K Y or Ctrl+Delete]

Deletes the currently marked and highlighted block, moving remaining text in the document up to close
the gap. A block once deleted is lost.

Write Block to Disk [Ctrl+K W]

Writes the currently marked and highlighted block to a file on disk. The editor will prompt for a name to
give to the new file. If a file exists already with the same name then you will be asked whether the existing
file should be erased.

Read Block from Disk [Ctrl+K R]

This command is used to read text from a file on disk and insert that text at the current cursor position,
leaving it as the currently marked and highlighted block. The editor will prompt for the name of the file
containing the text you want to read.

Append Block to Disk [Ctrl+K A]

Appends the currently marked and highlighted block to an existing file on disk. The editor will prompt for

the name of the file to which the block is to be appended.

Print Block [Ctrl+K P]

This command may be used to copy the currently marked and highlighted block to the printer, which must
be online and ready to receive data.

If no block is highlighted when this command is entered then the entire document is printed.

Paste Block [Available from Command menu only]

Transmits the currently marked and highlighted block through the serial port to a remote host, which must
be ready to receive text at the time - note that Odyssey has no way of checking this first. The effective
speed of transmission while pasting can be controlled by adjusting the ASCII character and line delays in
the Setup|File transfer... configuration section.

Indent Block [Ctrl+K I]
Un-indent Block [Ctrl+K U]

The block indent/un-indent commands increase or decrease the left margin offset of a block of text. For
example, if the Indent block command is used on a selected paragraph which was indented to column
five, then the indent is increased to column six. The Un-indent block command would reverse this.

These commands are most useful when working with Odyssey script source files (or other program
source files), in order to apply a uniform re-indentation on a bracketed section of program code.

Copy to Clipboard (Native) [CTRL+Insert]
Copy to Clipboard (CUA) [Ctrl+C or Ctrl+Insert]

Copies the currently marked block to the Windows clipboard. This may then be pasted into another edit
window inside Odyssey, or into an edit control in another application.

Cut to Clipboard (Native) [Shift+Delete]
Cut to Clipboard (CUA) [Ctrl+X or Shift+Delete]

Copies the currently marked block to the Windows clipboard, and then deletes the block. The cut block
may then be pasted back into the current edit window, into another edit window inside Odyssey, or into an
edit control in another application.

Paste from Clipboard (Native) [Shift+Insert]
Paste from Clipboard (CUA) [Ctrl+V or Shift+Insert]

If the clipboard contains text placed there by Odyssey or another application then this command allows
you to paste that text into the current file at the current cursor position. The pasted block then becomes
the new "current" marked block.

Odyssey Text Editor
Text Formatting commands
In fact, there is only one text formatting command provided in the Odyssey text editor.

Reformat Paragraph [Ctrl+B]

This command causes a paragraph to be reformatted such that it will fit between the defined left and right
margins. If "Right Justify" is enabled in the Setup|Editor configuration section then the editor will format
the paragraph such that each line in the paragraph is the same length, exactly meeting the right margin.

While the editor has a command to set a right margin, there is no equivalent command to set a left
margin. Instead the editor will format every line to have the same indentation as the first line to be
formatted. For example, to reformat a paragraph with a different left margin, move to the first character of
the first line in the paragraph, type the space bar or backspace to adjust its indentation, then type Ctrl+B
to reformat. All remaining lines in the paragraph will be given the same indentation.

The editor considers a paragraph to be any sequence of lines ending in a blank line. Since this is a pure
ASCII editor it does not use special control characters to mark paragraph ends.

The reformat paragraph command will not work unless word wrap mode is enabled.

This command leaves the cursor on the line FOLLOWING the blank line which ended the paragraph. This
is hopefully where the next paragraph begins, and is intended to make it convenient to step through a
document, reformatting each paragraph in turn.

Odyssey Text Editor
Mode Control Commands
Odyssey text editor optional modes are controlled via commands which are prefixed with Ctrl+O. Most
option commands are toggles, ie. the command enables the feature if was previously disabled, otherwise
the command is disabled.

Toggle Auto-Indent [Ctrl+O I]

Auto-indent refers to the editor feature whereby, when you type <Enter> to begin a new line, that new line
is automatically given the same indentation as the line just completed, and thus the cursor is placed
immediately below the first character of the previous line. When Auto-Indent is disabled the new line is not
given any default indent at all, and the cursor therefore moves to column one in the new line.

Toggle Word wrap [Ctrl+O W]

This command toggles "Word Wrap" mode, ie. if the word wrap was initially disabled then this command
will enable it, and vice versa. When word wrap mode is enabled a "Wordwrap" symbol will be visible on
the editor status line.

Word wrap occurs when the cursor reaches the right margin as you type. If that happens then the word
currently being typed is moved to the next line, with the cursor left positioned after the last character. If the
"Justification" option is also enabled then the editor will format the line just completed so that it exactly fits
the line between left and right margins.

Toggle Justification [Ctrl+O J]

This command toggles "Right Justify" mode. If enabled, the editor ensures that every line exactly meets
the right margin whenever a line or paragraph is reformatted. If disabled line ends are allowed to remain
ragged.

Toggle Backups [Ctrl+O B]

This function controls whether or not the Odyssey text editor writes a .BAK file containing the old file
contents, every time you save the file. If you disable this function then no backups are kept.

Toggle Hard Tabs [Ctrl+O H]

The Odyssey text editor can use Hard Tabs or Soft Tabs (note that this option is independant of the
Smart or Fixed tabs option described next). In Hard Tab mode tab intervals are filled with actual tab
characters (ASCII 9), whereas in soft tab mode the tab interval is filled with spaces. Hard tabs make the
text file smaller, but may create formatting problems if you import the text into an editor that assumes a
different tab interval. The Hard/Soft tab option only affects what Odyssey does when you insert a tab in
the Odyssey editor - selecting soft tabs does not prevent Odyssey interpreting tab characters correctly
when it reads in a foreign ASCII file. Note: the Setup|Editor dialog refers to this feature as the "Tab Fill
Character". If the fill character is Tab then you are using hard tabs, if it is space then you are using soft
tabs. The editor options menu contains a checkable "Hard Tabs" item (if this item is not checked then you
are using soft tabs).

Toggle Fixed Tabs [Ctrl+O F]

The editor can use Smart Tabs or Fixed Tabs. Smart tabbing means that when you press the tab key,
the editor examines the line above the current line, and aligns the cursor with the next word on that
previous line. This is extremely useful when laying out tables. Fixed tabs are your usual fixed-interval tabs
- the default interval being eight columns, though this can be changed in the Setup|Editor dialog.

Toggle EOL marker [Ctrl+O L]

The Odyssey text editor can read files whose lines end in CRLF (the normal DOS convention), or which
end in LF only (the convention for text files originating on Unix systems). Odyssey does not mind if the
same file contains a mixture of different line end types, and you don't need to set any modes in order to
be able to read these files.

However, when you insert new lines, the Odyssey text editor must know whether you want the new line to
end in LF or CRLF, which is why this option exists. If this option is enabled, then new lines will end in
CRLF, otherwise they will end with LF. The editor Options menu shows the current state of the EOL
toggle.

Set Tab Width [Ctrl+O T]

Odyssey defaults to a tab interval of eight columns when fixed tabs are being used. You can change the
tab interval using this command. A dialog prompts you for the new tab width.

This option has no effect if you are using smart tabs.

Set Right Margin [Ctrl+O M]

This command is used to set the right margin required for word wrap and paragraph reformatting
operations. The right margin is set at the cursors column position - note that you are not asked for a
column number. The right margin setting will be made permanent if you use the "Save Setup" option of
the Setup menu.

Odyssey Text Editor
Miscellaneous commands
This section groups together remaining editor commands which don't obviously fall into one of the
previously described command categories.

Help [F1]

Displays help topics which describe editor commands.

Keyword Help [Ctrl+F1]

Searches the Odyssey help data for topics which are indexed under the word currently under the text
cursor. This is of most use when editing Odyssey scripts, since it allows you to display help specific to a
particular script command or script language keyword.

Compile [F9]

If the file loaded in the current window is a source file for an Odyssey script (a .SRC or .SCR file), or a
keyboard mapper definition source file (a .KDF file) then the F9 key allows you to compile that script or
keyboard template directly, from within the editor. In the case of .SRC files, the compiled .SCR file is
written to disk, assuming that the compilation was successful. The same thing applies to .KDF sources,
which generate .KEY files if the compilation is successful. In the case of .SCR files this command simply
performs a syntax/semantics check of the script, but does not attempt to write a compiled version of the
script to disk.

If a syntax error occurs while the source file is being compiled then the compilation aborts, an error
message is displayed on the status line, and the editor text cursor is set to the position of the syntax error.
The error message is removed from the status line at the first keypress (note: that key is not swallowed).

Set Marker at Cursor [Ctrl+K n]
Jump to Marker [Ctrl+Q n]

The Set Marker n command (where n is a digit from 0 to 9) records the file position in an internal,
numbered marker variable. You can then later jump back to that marker by entering the Jump to Marker
n command, where n is the same digit. A marker once set remains set (automatically anchored to the
character at which it was set), until the Set Marker command is used elsewhere with the same n, or until
the text containing the marker is deleted. A block copy or move of a text region containing markers does
not copy the markers (a block move counts as a copy followed by a delete, so the markers are lost at the
delete step).

Upper Case Word [Ctrl+U]

If the cursor is resting on a word, this command forces that word to be all capitals.

Correct Case Word [Shift+F7]

If the cursor is resting on a word, and that word has occurred previously in the file, then this command
changes the case of that word so that it matches the most recent previous occurrence of that word. This
command is most useful when editing Odyssey scripts or other program sources when you want to
ensure that a consistant capitalisation is applied to a program symbol throughout.

Close Edit Window [Ctrl+K Q or Alt+F3 or Ctrl+F4]

Closes the current edit window. You will be prompted for confirmation if the file has been modified and not
yet saved.

Open File [F3]

The Load File command allows you to open a new editing window, prompting you for the name of the new
file. This is a shortcut for the File|Open menu command.

Save File [Ctrl+K S or F2]

Saves the current file to its current name. A .BAK copy of the old file is made, if backups are enabled in
the editor Options menu. The Save File command is a shortcut for the File|Save menu command.

Scroll Down [Ctrl+Z]
Scroll Up [Ctrl+W]

These commands scroll the edit window down and up, respectively. These are keyboard alternatives to
using the vertical scroll bar.

Using Odyssey
The Directory Viewer
A directory viewer window is opened when you select File|View directory (from the terminal mode main
menu), or when you click on the directory viewer toolbar button.

Please select one of the topics below for further information .

Introduction to the Directory Viewer
Changing Drives
Changing Directories
Selecting Files
Copying and Moving Files and Directories
Deleting Files or Directories
Renaming Files or Directories
Viewing Files
Listing Different File Types
Listing Files in Detail
Changing the File Sort Order
Uploading Files

Odyssey Directory Viewer
Introduction
A Directory Viewer window looks very much like a directory view in the standard Windows File Manager
application. A directory tree appears on the left, a list of files on the right, and a row of drive buttons at the
top. The Odyssey directory viewer feature exists in order to allow you to perform specific Odyssey
functions on the list of selected files - such as view selected text files with the Odyssey text editor, view
GIF™, BMP and JPEG files with the Odyssey bitmap viewer, or upload a batch of selected files using
Odyssey Zmodem file transfer. While all of this could have been implemented by making Odyssey a drag
and drop client (in fact, we allow that too!), it turns out to be more convenient to have the feature built
directly into Odyssey.

The Directory Viewer window consists of three main elements :-

The Drive Ribbon near the top of the window shows a list of disk drives on your system. This should
include network drives, if you have access to any. Each item on this list is a "drive button" - you can
change drives by clicking on one of these buttons. A white focus rectangle around one of the drive buttons
indicates the current drive. The current drive is also shown as part of the directory viewer window title.

The Directory Tree panel on the left is a hierarchical listbox which shows you the structure of the
directories on the selected drive. This list starts with a drive letter at the top (which indicates the root
directory of the drive), and below which are all the subdirectories on that drive. These subdirectories are
all indented (moved further to the right) with respect to the root directory, to show that the subdirectories
are children of the root directory. If subdirectories of the root themselves contain further subdirectories
then these sub-subdirectories (if shown) will again be indented, relative to the parent directory item.

You may not be interested in seeing the entire directory tree for a drive; you may in fact be interested in
seeing only the children of one directory. If you don't want to see the children of a directory tree item then
simply double-click on that item and the directory viewer will "collapse the branch" (ie. hide the children
away). If you want to expand the branch again in future then just double-click on that item again.
Alternatively, you can use the + and - keys respectively to expand and collapse tree branches, or you can
use the Command|Expand branch and Command|Collapse branch items from the directory viewer
Command menu.

Note the little icons which are shown to the left of each directory name :

The icon (meant to look like a closed folder) indicates a directory which has no children. When this
directory is open the icon changes to

.

The icon indicates a directory which has children, but these children are not currently displayed (the
branch containing the children has been collapsed or has never been expanded). When this directory is
open the icon changes to

.

Finally, the icon indicates a directory which has children, and those children are also displayed. When
this directory is open the icon changes to

.

The File List panel to the right of the directory tree shows filenames in the current directory which match
the current search pattern. You can choose whether to show only file names in this list, or you can show
full file details (size in bytes, date and time of last modification, file attributes). Later sections of this help
chapter will tell you how to make that choice.

Note that the area below the drive ribbon is a "split window", with the panel on the left side of the split
containing the directory tree, and the right side of the split containing the list of files. You can change the

relative sizes of these two panels by dragging the split bar to a new horizontal location (click on the
dividing bar with the mouse, then hold the mouse button down while you move the mouse to the new
location for the bar).

Odyssey Directory Viewer
Changing Drives
To change drives with the mouse: Simply click on one of the drive icons.

To change drives with the keyboard: Press the tab key until the drive ribbon has the keyboard focus
(the solid white focus rectangle changes to a dotted rectangle). Then use the left and right arrow keys to
move the focus rectangle to the drive you want, and finally press Space to change the current view to that
drive.

If you press Enter instead of space, Odyssey will open a second viewer window showing the
contents of the selected drive.

Odyssey Directory Viewer
Changing Directories
With the mouse: click on a directory name in the directory tree, or double click on a directory name in the
file list.

With the keyboard: When the directory tree has the focus you can use the arrow keys to move to other
directories (the file list panel is updated as soon as the new directory tree item is highlighted). If the file list
panel has the focus then you can change directories by using the arrow keys to highlight the directory you
want to change to, and then pressing the Enter key.

Odyssey Directory Viewer
Selecting Files
Before you can carry out operations on files or directories you must first tell Odyssey which files and
directories you want to work on. You do that by selecting them from the file list panel. Items in the file list
can be selected using either mouse or keyboard, as described below.

Selecting file list items with the Mouse.

· Select a single file by clicking on it with the mouse (this also deselects any previously selected items).
· Select a group of files by clicking on the first item of the group, and then Shift+Click on the last file in

the group. This selects the first item, the last item, plus everything in between.
· Toggle the selection state of an individual file by pressing Ctrl+Click.
· You can select several groups of files if you use Ctrl+Click to select the first item, and then use

Shift+Click to select the last item.

Selecting items with the Keyboard.

· As in any Windows application, you can select an item or a group of items by moving to the first item
you want to select, and pressing Shift+<movement key> to select all the files between the original
and final location of the highlight bar. This action deselects any previously selected items.

· You can also select files individually with the keyboard by first pressing Shift+F8 (the focus rectangle
begins to flash), then you move around the file list pressing space when you reach items whose
selection state you want to toggle. Finally press Shift+F8 again to end the special selection mode.

Selection states are lost if you change directories.

Odyssey Directory Viewer
Copy or Move Items
When you copy an item (a file or a directory), an exact duplicate of the item is made and placed wherever
you tell Odyssey to put it; the original file is not affected by the copy operation. When you move an item a
copy is made as before, but this time the original is deleted. Files (or directories) retain their original name
after the move or copy; you should use File|Rename if you wish to rename a file or directory. If the source
and destination drives for a move file operation are the same, then Odyssey does not physically copy the
file data, instead it simply renames the file, giving it a new path. If the source and destination drives are
different then Odyssey must physically copy the file data, which you will no doubt notice, because it takes
longer to complete.

 The destination directory for a move or copy must be different from the source directory - an item
cannot be moved or copied onto itself, because DOS does not allow two files in the same directory to
have the same name (copy), and moving a file to the same place it was moved from does not make
sense.

Moving or Copying Files and Directories.

Using the File menu: Having selected the items you wish to copy, select File|Copy - a dialog will appear
which will prompt you for the name of the destination directory. If you are moving items (rather than
copying), then select File|Move instead.

Using the toolbar: Do as above, but instead of pulling down the file menu, just click on the move or
copy toolbar button instead.

Using "Drag and Drop": Select the item(s) you wish to copy, then click on one of the selected files and,
while holding down the mouse button, drag the selection to the destination directory where it appears in
the directory tree. Note that the destination directory must be visible in the directory tree before you start
dragging, for this to work as described. As you are dragging the files you will note that the mouse cursor
changes to reflect a dragging operation. When you release the mouse button a dialog will appear, asking
you to confirm the operation.

If you merely drag the items as above, Odyssey will assume that you mean to copy the selection. To
perform a move operation you drag the items to the destination directory as described above, but this
time press and hold down the ALT key, and keep it down until after you have released the mouse button
over the destination directory.

Alternatively, you can drag the selected file(s) onto the move or copy toolbar buttons. In this case a
dialog will appear which prompts you for the name of the destination directory.

Odyssey Directory Viewer
Deleting Files or Directories
For the sake of safety, Odyssey puts certain limitations on the things you can delete using the procedure
described below. You are not permitted to delete the Odyssey home directory, and nor are you allowed to
delete the root directory on any drive. This still leaves more than enough rope to hang yourself with, so do
please be careful!

Deleting Files and Directories.

Using the File menu: Having selected the items you wish to delete, select File|Delete... - a dialog will
appear, asking you to confirm that you really do want to delete the selected items.

Using the toolbar: Do as above, but instead of pulling down the file menu, just click on the trashcan
toolbar button instead.

Using "Drag and Drop": Select the item(s) you wish to delete, then click on one of the selected files and,
while holding down the mouse button, drag the selection to the "trashcan" toolbar button.

Once deleted, files and directories are gone for good - you cannot undo the deletion. Thus the
moral is: stop and think before you delete anything.

Odyssey Directory Viewer
Renaming Files or Directories
Odyssey does not allow you to rename the Odyssey home directory, but doesn't stop you renaming
anything else. Be careful when renaming directories, since that may invalidate search paths and other
path information stored in the configuration files of your applications.

To Rename Files or Directories

First select the item(s) you wish to rename, then select the File|Rename... menu item. You will be
prompted for a new name for the file or directory.

If you are renaming a group of items, then the "new name" must be a wildcard.

Odyssey Directory Viewer
Viewing Files
To view a file or file(s), first select the file(s), then select the File|Open... menu item, or click on the "Open
document" toolbar button.

The exact meaning of "view" depends on the file type. If the selected file is an application (.EXE file), then
that application runs. If the selected file is a Windows help (.HLP) file then Odyssey asks the Windows
help application to display its contents. If the file contains a bitmap, then that bitmap is read and a Bitmap
Viewer is opened. Currently, Odyssey only recognises GIF,BMP,JPEG and it's own FAX format as bitmap
files. If the file is none of the types mentioned then Odyssey assumes it to be a text file, and opens a text
editor window.

To prevent accidentally opening a zillion selected files, Odyssey ignores anything after the first ten
selections (an arbitrary limit).

Odyssey Directory Viewer
Listing Different File Types
Odyssey defaults to displaying, in the file list panel, all the files in the current directory which match the
search pattern *.*. However, you can change this by selecting the File|Show Files of Type... menu item,
or by clicking the "New file type" toolbar button.

In either case, you will be prompted for the new wildcard, and the files listed will then change to show only
files matching the new pattern. For example, changing the pattern to *.TXT will cause the file list panel to
be repainted, only listing files in the current directory which have the .TXT extension.

The file list always includes a list of the subdirectories in the current directory, regardless of the
current file type selection.

Odyssey Directory Viewer
Listing Files in Detail
When Odyssey displays a list of files in the file list panel, it normally shows only the name of each file. You
can change this by pulling down the Directory Viewer Command menu.

Note that the first two options on the menu are:-

Ö Show filenames only
Show all file details

When the file listing contains only file names, the first of these menu items will be checked. If you select
the Show all file details option then it will be checked, and the file listing will change to a single column
format, containing all the details you would normally see in a DOS directory listing, ie. the file size in
bytes, the date and time the file was last modified, plus file attributes as listed in the table below:-

A - The file has the "archive" attribute bit set, meaning that it has been modified since the last
time it was backed up.

H - The file is hidden (it does not appear in a normal DOS directory listing).
S - The file is a system file.
R - The file is marked read-only.

Odyssey Directory Viewer
Changing the File Sort Order
By default, the Odyssey directory viewer lists files sorted in alphabetical order of their name ("a..." first).
However, other sorting methods are supported. To change the sorting method, pull down the directory
viewer Command menu, and choose one of the Sort by xxxx options - a check mark will be shown
beside the menu item relating to the current sorting method. In greater detail, the sorting options are :-

Sort by name: Files are listed in alphabetical order of their name. This is the default sorting order, as
described above.

Sort by type: Files are sorted first by their extension, and then (within a group of files with the same
extension) by name. This has the effect of ensuring that files with the same extension are listed next to
each other.

Sort by size: Files are sorted so that the largest files appear at the top of the list, and the smallest files at
the bottom. If your disk is nearly full then finding the largest files you no longer need, and deleting them,
has the quickest payoff in terms of recovering disk space.

Sort by date: The files are sorted by age, with the oldest files at the top of the list. You might use this to
find files which you haven't needed in a long time, and liberating the disk space they occupy.

Odyssey Directory Viewer
Uploading Files
This feature is one of the main reasons Odyssey implements its Directory Viewer facility, since it gives
you the power to select a list of files and upload them to a remote host, all in one batch (assuming a batch
file transfer protocol is used).

Now, while it is true that the standard Upload command in terminal mode allows you to upload a batch of
files, you normally have to indicate which batch of files by means of a single wildcard specification. That's
fine if all the files in the batch can be covered by a single wildcard that doesn't also pull in unwanted files,
but if they can't, then you need the directory viewer upload feature described here.

To upload a list of files, first select all the files you want, using methods described earlier (the files do all
need to be in the same directory). Then pull down the Upload menu and select your upload protocol, or, if
you intend to perform a Zmodem upload, then you can simply click on the "Zmodem Upload" toolbar
button instead. You could also drag the selected files onto the "Zmodem Upload" toolbar button.

Note that you could, if you wished, preselect a list of files prior to connecting to a remote host, leaving the
directory viewer open (though perhaps minimized) while you dial. Then once connected, switch to the
open directory viewer and upload the selected files, as described above.

If you try to upload a batch of files using a non-batch protocol, eg. Xmodem, Ymodem or ASCII,
then Odyssey will only upload the first of the files in the batch. The feature described above is intended
for use with a batch protocol, ie. Ymodem batch, Zmodem, SuperKermit or Compuserve B+.

Using Odyssey
The Bitmap Viewer
Odyssey includes a Bitmap viewer window class primarly in order to implement the View GIF/JPEG
while downloading feature (selected in the Setup|File transfer... dialog), and of course for use in the FAX
server for viewing received FAX documents and for previewing FAX documents you are about to transmit.

Since we must provide a bitmap viewer, we decided to also make it available for use in other situations,
such as when you double click on a bitmap file in the Directory Viewer file list panel. The bitmap viewer
itself is completely generic, however we currently only provide file readers for GIF,BMP,JPEG and FAX
file formats - other file formats may be supported in due course, remembering of course that what we
have here is a comms package, not an image processing utility.

For further information on the bitmap viewer, please choose a topic from the list below:

Viewing a Bitmap file
Printing a Bitmap
Copying Bitmaps to the Clipboard
Moving around a large Bitmap image
Deleting Bitmap Files

Odyssey Bitmap Viewer
Viewing a Bitmap file
If you enable the View GIF/JPEG while downloading option of the Setup|File transfer... dialog, then a
Bitmap Viewer window will be opened automatically when you begin downloading a GIF or JPEG file; this
happens regardless of the file transfer protocol you use.

Alternatively, you can manually open a bitmap viewer by double-clicking on a GIF,BMP,JPEG or FAX file
in a Directory Viewer file list panel.

Finally, if you double-click on the "List of Received FAXes" displayed by the FAX Server then a bitmap
viewer is opened, and the selected FAX is displayed inside it.

Odyssey Bitmap Viewer
Printing a Bitmap
You can print a bitmap by reading the bitmap file into an Odyssey bitmap viewer and then selecting File|
Print bitmap... from the Bitmap Viewer main menu, or by clicking on the "print" toolbar button.

Odyssey Bitmap Viewer
Copying Bitmaps to the Clipboard
You can copy a bitmap image to the clipboard by first reading the bitmap file into an Odyssey bitmap
viewer and then selecting Edit|Copy... from the Bitmap Viewer main menu.

The bitmap is always copied to the clipboard in DIB (CF_DIB) format, in order that palette information is
preserved for the target application.

Odyssey Bitmap Viewer
Moving around a large Bitmap image
Many bitmap images you would like to view with the Odyssey bitmap viewer are too large to view in their
entirety, even when you maximize the viewer window, unless you have a larger than average display
resolution. Most current Windows users have 640x480 or 800x600 resolution displays - the largest
images you are likely to want to view go up to 1024x768 or even (in the case of a full page 200 dpi FAX
image), as large as 1720x2300 pixels). To handle these larger images you must be able to scroll (or pan)
around inside the image. This section outlines the menu/keyboard commands which allow you to do just
that. Note that you can shrink an image by clicking it with the right mouse button; you can also enlarge an
image by clicking with the left mouse button.

The arrow keys and page keys can be used to roam over the image, as can the scroll bars.

The Home and End keys can be used to jump directly to the left or right sides of an image. The
Shift+Home and Shift+End keys jump to the top or bottom of an image.

If the bitmap file contains more than one page (eg. a multi-page FAX file), then Ctrl+Home can be used
to move to the first page, and Ctrl+End moves to the last. Ctrl+PgDn moves to the next page,
Ctrl+PgUp moves to the previous page.

As in any Odyssey MDI child window, the F5 key can be used to zoom and unzoom the bitmap viewer.

Many of the above commands are duplicated in the bitmap viewer Command menu.

Odyssey Bitmap Viewer
Deleting Bitmap Files
Sometimes, having viewed a bitmap image you have just downloaded, you will decide that you do not
wish to keep that image. You can delete the bitmap file when the viewer is active by selecting File|Delete
bitmap... or by clicking the "trashcan" toolbar button. You will be asked to confirm that you really want to
delete the bitmap file.

You are not allowed to delete a FAX file if the bitmap viewer was opened in order to preview a FAX before
transmission, because the FAX server always deletes such temporary fax files itself.

Odyssey Bitmap Viewer
The GIF File Format
The Graphics Interchange Format (GIF) was invented by Compuserve Inc. to allow Compuserve users
to exchange graphics images using a standard format. GIF incorporates the following features, all of
which are supported by Windows Odyssey:-

· LZW compression to reduce file size (and hence upload/download times). This is essentially the
same compression algorithm used by the popular ARC and ZIP utility programs, and by V.42bis
modems.

· Optional use of an interlaced image format, ie. instead of storing each successive scan line in order,
the first part of the file contains every eighth scan line, then every fourth scan line, and so on until the
complete image is filled in. This is most useful when viewing an image as it is being downloaded,
since it allows the user to see the complete image (albeit at lower resolution) when the download is
only partly complete; the user could then decide to cancel the download if the image turned out to be
uninteresting. Note however that few GIF images actually make use of this encoding option.

· Support for monochrome images, and palette based images up to 256 colors.

· A streamable format, ie. all the information necessary to decode the image is provided in a header
which precedes the image data, hence it is possible to display the image accurately as it is received.
This feature would not be possible, for example, with a 256-color PCX image, which stores the palette
at the end of the image, or with TIFF images of any resolution, which have no fixed order for image
components.

Windows Odyssey can decode all GIF images conforming to the GIF89a and earlier specifications.

The GIF format has a number of limitations and/or weaknesses:-

· The lossless LZW compression method is only truly effective with particular types of images, ie. those
in which repeated substrings occur frequently. An example of an image which would compress well is
a simple line art or "cartoon" type image, consisting of large regions of the same color. Simple run-
length encoding would also be highly effective with such images, so one is led to wonder whether the
choice of LZW compression is a particularly good one. True life images (scanned photographs etc),
will not achieve high compression ratios with the LZW scheme - while there is repetition in such
images, simple LZW type algorithms will not detect it.

· The GIF format, currently, cannot handle 24bit images. Because of this, and because other (lossy)
schemes get much better compression, many hosts are nowadays gradually moving towards JPEG
as the standard exchange format for callers.

Odyssey Bitmap Viewer
The BMP File Format
The BMP file format is the native portable graphics format for Windows. It originated on OS/2, and has
gradually been extended as hardware capabilities have increased. When loaded into memory, a BMP
(minus header) is known as a DIB (Device Independant Bitmap), which distinguishes it from a DDB
(Device Dependant Bitmap), which is the internal image format your video device driver uses. BMPs
support bitmaps containing 1, 4, 8 and 24 bits per pixel. A new option introduced in Windows NT supports
bitmaps containing 16 bits per pixel.

The BMP/DIB format has a number of peculiarities which make it awkward (and hence slower) to use,
compared to DDBs. In particular, a BMP/DIB image is stored in the file upside down (the first scan line in
the file is the last scan line of the image), which presents certain problems and overheads when reading
and manipulating BMPs. Also, 24 bpp BMPs store the pixel components in Blue-Green-Red order, which
is the reverse of the order used by most other formats (and incidentally, is the reverse of the order as
documented by Microsoft).

It is known that future versions of Windows address some of these peculiarities, particularly there will be
an optional variant of the format which stores images the right way up.

Odyssey Bitmap Viewer
The JPEG File Format
JPEG (Joint Photographic Experts Group), is actually a data stream format, not a file format. The JPEG
standard leaves a number of factors unspecified, particularly the color model used (ie. RGB vs YIQ vs
HLS etc). Therefore, most PC based JPEG readers/writers actually conform to the more specific "JPEG
File Information Format" (JFIF) standard, which specifies the YCbCr color model for 24bpp images.

JPEG uses a lossy DCT based scheme for image compression, and hence gets the highest compression
ratios of any popular image format, but only gets this performance when working from the original,
unprocessed true color image. In particular you should note that both quality and compression ratio will be
lower if you attempt to JPEG-compress an image which has been previously processed (eg. dithered and
saved as a GIF).

Note that a JPEG image never uses a palette - the image is always either grayscale (8bpp) or truecolor
(24bpp). This obviously has implications for the display of JPEG images on the 256 color displays used
by typical Windows installations, since it means that an image must always be dithered before it can be
viewed satisfactorally.

There are a number of options Odyssey could have used to dither a JPEG image - most readers use a
simple ordered dither, which has the merit of being quite fast, but introduces unacceptable artifacts into
the image. Instead, Odyssey does an "error diffusion" dither, which takes slightly longer, but does not
introduce noticeable artifacts.

Odyssey uses a fixed palette for dithering all JPEG images, not an optimized palette. Optimizing the
palette would produce much better results than a fixed palette dither, however it also takes much longer to
do. We felt it was better to try and achieve decent quality very quickly, and leave you to use dedicated
JPEG reader applications when you need superior quality.

Odyssey Bitmap Viewer
The FAX File Format
The .FAX format is a proprietory format used by Odyssey to store multi-page FAX documents. The format
consists of a simple header, and then multiple images in CCITT Group III (T4) FAX format.

The information given below is provided for the benefit of programmers who wish to read Odyssey FAX
files. Note however that we do not promise that this format will remain unchanged in future releases.

The following is the format of a .FAX file header (256 bytes) :-

typedef struct { /* 256 byte header */
 /* 0*/ char Marker[4];
 /* 4*/ word Version;
 /* 6*/ word HeaderSize;
 /* 8*/ word HDPI,VDPI;
 /*12*/ word Pages;
 /*14*/ word PageIndex;
 /*16*/ word Date;
 /*18*/ word Time;
 /*20*/ char RemoteID[22];
 /*42*/ word RxError;
 /*44*/ byte Reserved[84];
 /*128*/ word Index[64];
} FAXHDR;

The fields in this header record are as follows:-

Marker - Provides a signature which can be used to verify that this is an Odyssey .FAX file. The signature
is "ODFX" - note that there is no terminating NUL byte.

Version - identifies the sub-format of this particular FAX file. Windows Odyssey v2.00 writes the value
200h into this field.

HeaderSize - the size of the .FAX file header, in bytes. Image data for the first FAX page begins at offset
HeaderSize from the beginning of the file.

HDPI - the horizontal resolution of each FAX image, in dots per inch. Currently, this value is always 200
decimal. Note that all FAX pages in a single file have the same resolution.

VDPI - the vertical resolution of each FAX image, in dots per inch. This value will be 100 for normal
images, and 200 for "detail" images.

Pages - the number of pages in this FAX file.

PageIndex - the offset, in bytes, from the beginning of the file to the "page index", which contains the file
address of each FAX page. In the current FAX format, this value is always 128.

Date - The date this FAX file was created/received, using the same format as a DOS file date/time stamp.

Time - The time this FAX file was created/received, using the same format as a DOS file date/time stamp.

RemoteID - This is the station ID of the remote FAX station which transmitted this FAX. This field is only
valid for received FAX files (it will be zeroed in FAX images created locally).

RxError - The error code returned by the FAX receive protocol routines. This should be zero if the FAX

was received without errors. Note that this field is of course valid only in FAX images received from a
remote FAX station.

Reserved - fill bytes used to pad the header to 256 bytes, some of which may be used for other purposes
in future Odyssey releases.

Index - The file offset of each page in the FAX document. Each offset uses units of 128 bytes; ie. a reader
should multiply this value by 128 to obtain the byte offset of the beginning of a page. Note that the size of
a page n can be calculated using the formula (hdr.Index[n+1]-hdr.Index[n])*128, provided that n does
not identify the last page in the file (in which case the formula should be: FileSize(fax) -
hdr.Index[n]*128).

The FAX pages themselves are encoded using raw Group III (T4) compression, ie. they are stored exactly
as received. Each page is however padded up to the next multiple of 128 bytes.

Using Odyssey
The FAX server
The Odyssey FAX Server allows users to send text and graphics files as FAX documents, receive FAX
documents, view FAXes, export FAXes to various standard graphics formats, print FAX documents, and
so on. The FAX server module can be accessed via the Odyssey Command menu, or by pressing
ALT+V while the terminal window is active. The FAX server can also be controlled entirely from a script.

For further information about the FAX server, please select one of the topics below:

Introduction
Fundamentals
Sending a FAX
Receiving a FAX
Viewing a FAX
Printing a FAX
Exporting a FAX in PCX or TIFF format

Converting ASCII text to FAX
Customizing Cover Sheet Generation
Embedding Graphics in a FAX

Script interface to the FAX Server

Note that the Odyssey FAX server is an integrated part of Odyssey, and is not intended to be
used as a "printer driver" by other applications.

Odyssey FAX Server
Introduction
The FAX Server allows users to send text and graphics files as FAX documents, receive FAX documents,
view FAXes, export FAXes to various standard graphics formats (eg, for processing by an OCR package),
print FAX documents, and so on.

The FAX Server is activated by either selecting Window|FAX server... from the terminal window menu, or
by pressing ALT+V when the terminal window is active. There will normally be a brief pause while the
FAX server configures the modem for FAX operation (a dialog appears telling you that this is happening),
and then the "Received FAXes" window will be displayed, which lists the names of any FAX files currently
in the FAX receive directory.

 If no FAX modem (or no modem at all) is connected and powered up, then the "brief pause"
mentioned above may go on for quite some time (20 seconds or so), until Odyssey finally concedes that
your modem just doesn't want to play.

The first time you invoke the FAX server you should check the "Local station ID" and "Path for FAX
files" (both configured in the Setup|Fax... dialog), before doing anything else. These items are normally
set up by the INSTALL program when you first installed Odyssey, but it will do no harm to check again
now. Before changing the local ID you should read the documentation on the local ID option, in particular
the parts about which characters are allowed. Note that if you enter a directory name in the "Path for FAX
files" field then that directory must exist - Odyssey will not create it for you.

The FAX server always automatically saves between sessions the values you enter in the various menu
options, including the local ID, receive directory, and "Send FAX" dialog options.

We feel we should warn you that many modems on the market today (especially class II
modems) are buggy, ie. they do not conform properly to the specifications published by the EIA, which is
the only interface specification programs like Odyssey have to work with. Because of this, it is impossible
to guarantee that our FAX module will work with all FAX modems. Older FAX software will generally be
more reliable, because the authors of FAX software which has been on the market for some time have
had many modem bugs reported to them, and will have gradually collected and incorporated workarounds
in their product so that, over time, fewer modems give problems as far as the end user is concerned - at
least until the next batch of new modems appear. Since Odyssey FAX support is relatively new we do not
have the benefit of this maturity; while we have tried very hard to fix all the problems we have discovered
thus far during testing, it is inevitable that some modems somewhere will still cause problems. However, if
you report such a problem to us we will make every effort to correct the problem as soon as possible.

Odyssey FAX Server
Fundamentals
The Rise of the FAX machine

Those of us who have been using modems for much of the last ten years have spent a great deal of that
period evangelising about the technology to a dubious non-technical audience. To us it has seemed
obvious that the ability to send and receive files by modem, or converse with other modem users using
text messages was a wonderful thing, which was bound in the end to replace the infinitely inferior
technology of the ordinary postal service; derisively referred to as "snailmail".

The letter post has indeed been replaced to a certain extent, but not by the technology we expected.
Instead a subset technology has been developed based around a single unit consisting of a scanner,
printer and modem, the so-called facsimile or FAX machine. Although the components of a FAX machine
are familiar items to computer users, the combination has become a consumer item, infinitely easier for
the naive user to cope with than the alternative we (as techies) might have preferred.

The success of the diminutive FAX machine cannot easily be exaggerated - in fact its use has grown so
much that in the last couple of years it has threatened to expand into the techie domain, in the form of
stand-alone dual purpose modems capable of both data and FAX operation - add a separate scanner and
printer and your FAX modem becomes the equivalent of a FAX machine; in fact you don't even need the
scanner, since it is possible to generate the FAX image of a document entirely inside the computer
without ever producing a paper copy!

The only difference between a "data" or "FAX" modem is the signalling standards most commonly used -
the signalling standard refers to the tones (or signal levels, or phase modulation, or whatever) used by the
modem to represent binary data. For data modems V21 is the most common 300 bps standard, and other
common data modem standards include V22 for 1200 bps, V22bis for 2400 bps, V32 for 9600, and
V32bis for 14,400 bps. Data modems are also generally full duplex, ie. they have two separate
communications channels making it possible to send data and receive data at the same time.

On the other hand, a FAX modem uses V.21 for 300 bps, V.27ter for 2400 or 4800 bps, V.29 for 7200 or
9600 bps, and V.17 for 14,400 bps. Also, FAX modems are generally only half-duplex, i.e. data can only
be sent in one direction at a time. This means that it is generally not possible for a FAX modem to
communicate with a data modem unless the latter includes specific FAX capability (many users have
been fooled into buying a 2400 baud modem with "9600 baud FAX", believing that they would be able to
send ordinary data at 9600. This is wrong of course - you need a V32 data modem to do that).

FAX Modem Interface Standards

Of course, the fact that a data modem has additional FAX capability is not the end of the matter. In order
to use that facility you must also have software capable of operating the FAX part, rather than just the
normal data part. Although FAX modems have been around for a few years, for the first couple of those
years there was no standard way of controlling them, so the early FAX modem user generally had to
either learn to live with the standard software bundled with the modem, or do without PC-FAX capability.

The old problem of lack of standards has now been more than solved, in fact as is often the case, we now
suffer from a surplus of them. In 1990 the Electronic Industries Association (EIA) approved a FAX modem
control standard commonly referred to as "EIA Class I". Class I simply extends the de-facto standard
Hayes "AT" command set to include a new set of commands for controlling FAX modulation schemes,
synchronous communications, and so forth.

Very recently (in late 1992) a new version of the EIA standard has appeared called "Class II". It still
consists of a set of AT commands, but now the modem firmware contains much of the code required to

implement the FAX protocol, which for class I modems was part of the task which the comms software
had to manage. For users however the difference between class I and class II is irrelevant, provided that
the communications software properly implements the remaining parts of the FAX protocol - whatever that
might be.

A competing standard called "Communicating Applications Specification" (CAS) has also appeared. CAS,
which is supported by DCA and formerly by Intel, is implemented at a much higher level than EIA Class
I/II - in fact, it doesn't deal with the FAX modem at all, but instead specifies a callable program interface
which would be implemented as a DOS device driver supplied with the modem, and which client software
would use in much the same way it uses a memory manager, or a mouse driver. CAS does not appear to
have been a great success so far - several PC applications have supported it, but few modem vendors
have supplied compliant drivers to control their modem - others reasons for this lack of success might be
that users are reluctant to install a memory hogging device driver if they can possibly avoid it, and also
because of difficulties accessing the CAS driver software from protected mode environments such as
Windows.

There is talk of other standards, for example there is FAXBIOS, supported by WordPerfect Corp and
Everex (a CAS-like standard) and supposedly there is also a new CCITT standard called T.Applecon or
T.611 which is due to appear (Intel are even rumoured to have switched allegiance from CAS to T.611).

Currently, the Odyssey FAX Server module supports EIA/TIA class I and II modems. Should support pick
up for competing standards then we will update the package appropriately at that time.

Some things which may surprise you....

· FAX machines are bitmap oriented. The main thing you must remember about FAX is that it is a
standard for transferring image data between facsimile machines. If you send a text file from your PC
it doesn't arrive as a text file, it arrives as a series of images, each of which corresponds to a single
imaged page. If you wanted to convert that to ASCII text you would need to run the images through
an OCR package. The Odyssey FAX module supports the export of received FAX documents to PCX
or TIFF format, which are the formats most commonly supported by PC OCR packages. We may
even bundle our own OCR package one day.

· A Laser Printer doesn't improve image quality. Our first reaction at Skyro Software to the notion of PC
based FAX was "We'll be able to output FAX pages to a 300 dpi Laser, instead of that awful FAX
thermal thingy".... if something similar occurred to you, then you will be in for a bit of disappointment.
First, the resolution of the source image is far more important than the resolution of the printer - in the
case of standard FAX image format, the resolution is only (approximately) 200 dpi in the horizontal
direction, and 100 dpi in the vertical - so you just don't have the detail in the original image to make
full use of the printers 300 dpi capability.

Secondly, you may be surprised to discover (it certainly surprised us), that the quality of a FAX page
has little to do with either the print quality, or of errors introduced during transmission, but is mostly to
do with the poor quality of scanner used by the typical cheap office FAX machine - if you were able to
directly capture the output from such a scanner and save it as a PC file, the result wouldn't look that
much better than it does after it has been transmitted, then received and printed on the remote FAX
machine.

So, a FAX image printed on your 300 dpi Laser or Inkjet is still going to look unmistakably like a FAX
image. You do have the more modest advantages however that your FAX can be printed on good
quality single sheet paper instead of that "horrible thermal roll which won't lie flat", and you can also
take comfort in the knowledge that the FAX page won't turn black if you accidently leave it in direct
sunlight, or near a heater.

Odyssey FAX Server
Sending a FAX
The Send FAX facility allows you to send a FAX document to a remote FAX station. The file to send can
be in FAX, PCX, TIFF or ASCII text format. The FAX server uses the filename you supply to guess the
format - if the filename extension is not .FAX, .PCX or .TIF then it is assumed to be ASCII text.

You send a FAX by first selecting Command|Send FAX..., or by clicking the "Send FAX" toolbar button.
Either of these actions causes the Send FAX dialog to be displayed, whose fields are described below.
Note that most of the fields on this dialog provide the information necessary to flesh out the cover sheet
macros (from, to etc). This information is not strictly required (even if you enable the "Send cover sheet"
checkbox), but the generated cover sheet will look rather odd without it. The fields on the dialog are as
follows:-

File to send: This field tells the FAX server which file contains the data which is to be transmitted as a
FAX - note that a full path to this file must be supplied, if the file is not in the Odyssey directory. If the file
to send is ASCII text, and is only a few lines long then you might like to omit this item and make use of the
"Add-Info file" field instead. The "search..." button to the right of the "File to send" field brings up a
standard file selection dialog, which is helpful if you can't remember the full path details.

If you don't supply a file name in this field then you must supply a file name in the "Add-Info file" field
instead.

FAX number: This is the telephone number of the FAX machine you want to call. If you don't supply a
number then the FAX server expects you to dial manually, and will prompt you appropriately when it is
ready for you to dial.

Reformat text to fit margins: This field is ignored unless the file being sent is ASCII text. Most word
processing packages have an option to export a document to ASCII text format, but many packages when
doing so will create a file in which each text paragraph is a single long line which then needs to be
reformatted to fit within the margins set in the importing application (the Odyssey FAX server in this case).
If you would like the text to be formatted to fit inside the FAX page margins, then enable this checkbox. If
checked, then any line which extends beyond the right margin is broken at a word boundary so that it fits.
If not checked, then lines are simply truncated at the right margin.

When preparing a text file, it is not necessary to indent the text from the left, since indents are
automatically applied to the left and top of the page by the FAX conversion routines. Each text line on the
FAX page is a maximum 92 characters, assuming you use the default fonts supplied.

Preview FAX before sending: If this checkbox is enabled, then Odyssey will give you the chance to view
and approve the FAX image resulting from an ASCII to FAX conversion before it is transmitted to the
remote FAX station.

Send cover sheet: If this checkbox is enabled, then Odyssey will generate a cover sheet, and will
transmit it prior to the main fax document.

Quality: This field consists of a pair of radio buttons which control the resolution of the FAX which is
generated and transmitted. If quality is set to Normal then the FAX resolution will be 200 dpi horizontally
by 100 dpi vertically. If quality is set to Detail then the resolution will be 200 dpi both horizontally and
vertically. Note that while FAX image quality is significantly enhanced by the detail option, it also means
that the FAX takes twice as long to transmit.

None of the fields described below are relevant unless the "Send cover sheet" option is enabled.

From: This is used to fill in the "from" macro of the cover sheet as defined in the COVER.TEM file. "From"
is normally the name of the person sending the fax document.

To (Company): This is used to fill in the "to" macro of the cover sheet as defined in the COVER.TEM file.
"To" is normally the name of the company to which the fax is directed.

Attention: This is used to fill in the "attn" macro of the cover sheet as defined in the COVER.TEM file.
"Attn" is normally the name of the individual for whom the fax is intended.

Our Ref: This is used to fill in the "oref" macro of the cover sheet as defined in the COVER.TEM file. "Our
Ref" is the senders file reference, account reference etc associated with the subject of the fax.

Your Ref: This is used to fill in the "yref" macro of the cover sheet as defined in the COVER.TEM file.
"Your Ref" is the recipients file reference, or account reference etc associated with the subject of the fax.

Subject: This is used to fill in the "subject" macro of the cover sheet as defined in the COVER.TEM file.
"Subject" is a one line description of the subject matter of the fax document.

Additional Info File: The standard cover sheet template supplied with the FAX server ends with the
words "ADDITIONAL INFO". If you want to supply a few lines of text to follow this then you can do so by
creating a short text file and then filling in this field with the name of that file. Note that the filename
entered here must include a full path; if you can't remember the full path then simply click the "search..."
button to the right of this field and you will be presented with a standard file selection dialog. If you supply
an additional info file then it is permissable to leave the "File to send" field blank, in which case the entire
FAX transmission will consist of just the cover sheet.

Odyssey FAX Server
Manual Dialing
As briefly mentioned in the documentation for the "Send FAX..." dialog, if you do not supply a telephone
number in the appropriate field, then the FAX server assumes that you want to dial manually (a small
message will appear to that effect at the point when Odyssey would normally have sent a dial command
to the modem). One reason you might have for dialing manually could be because the destination number
uses one of the increasingly common "FAX splitter" switches, allowing a FAX and answering machine to
share a single line. The voice message from the answering machine is in that case likely to confuse your
poor little modem if you allow it to auto-dial, because the modem is going to expect to hear FAX carrier
tones as soon as the call is established.

Manual dialing works best if you have a telephone handset plugged into the "phone" socket on your
modem, though it can also work (less reliably) if you have the handset plugged into an extension socket
on the wall, with your modem on another extension on the same line.

To "manual dial" you simply enter the "Send FAX..." dialog details as described, leaving the telephone
number field blank. Hit enter, or click OK, and then wait until the software prompts you to begin manual
dialing. Now dial the number on the handset, wait until you hear the fax answering tone (ignoring
answering machine messages etc), and then press the <Enter> key. At that point the FAX server will take
over again, and attempt to force a connection. If the attempt fails then the FAX server will give you the
chance to dial again, up to the normal redialing limit specified in the Odyssey setup menu.

 Sometimes the dialer will appear to give up after a single attempt: this is because a connection
was actually made, and it was an early stage of the FAX protocol negotiation which failed.

If you do not wish to dial manually then press <Esc> at the "manual dial now" dialog which was
mentioned above.

Odyssey FAX Server
Receiving a FAX
You don't need to do anything complicated to receive a FAX. Just make sure that the Enable Receive
box is checked in the Setup|Fax... dialog, and that the Receive directory is properly configured (the
directory exists, and is named in the above dialog), and then open the FAX server.

Bear in mind that if you share your modem line with a phone, then it isn't really a good idea to have
"Enable Receive" checked all the time, since voice callers are going to be somewhat surprised by the
FAX tones which greet them.

Odyssey FAX Server
Viewing a FAX
When the Odyssey FAX server is active, a window entitled "Received FAXes" is visible, containing a list of
all the fax files in the fax directory. To view any of these files, simply double click on the appropriate entry
in that list.

Doing so causes Odyssey to open a Bitmap Viewer window, in which the FAX is displayed, and from
where it can also be printed or deleted.

The bitmap viewer displays a FAX page at a resolution of 100 or 200 dpi (controlled by the Viewer
resolution field of the Setup|Fax... dialog). The 100 dpi setting is half the standard FAX resolution, but
allows you to see more of the page on the screen at one time. This may result in complex lettering or
graphics appearing to be of lower quality than is really the case in the file; when you print the page
however the full FAX resolution is used (in fact it is printed at 300 dpi - a higher resolution).

Odyssey FAX Server
Printing a FAX
You print a FAX document by selecting the Command|Print Fax... menu option, or by clicking the "Print
FAX" toolbar button.

Either of the above actions causes the Print Fax... dialog to be displayed, allowing you to select which
FAX file and which range of pages to print.

Odyssey FAX Server
Exporting a FAX
The .FAX file format used by the Odyssey FAX server module is a specialised multipage image format
ideally suited for FAX applications, but which is unique to Odyssey. If you need to convert individual
pages into a more portable image format then you can do so by selecting Command|Export Fax... from
the FAX server menu, or by clicking the "Export FAX" toolbar button, either of which causes the Export
Fax... dialog to appear. Odyssey supports exporting FAX documents to PCX and TIFF formats.

Odyssey FAX Server
ASCII to FAX conversion
As mentioned elsewhere, a FAX transmission sends bitmapped image data from a source to a destination
FAX station. Therefore, in order to send a text file, that text must first be converted into a bitmapped form.
The Odyssey FAX server does this as the initial step before dialing a number (you will see "Converting..."
on the progress display).

Conversion involves taking the ASCII source, extracting the character codes, and painting those
characters on the page using a selected font. The FAX server uses one of two different fonts depending
on the resolution of the FAX. For normal resolution (200 by 100 dpi), the FAX server uses the
PCFAX100.FNT file. For "detail" resolution (200 by 200 dpi), the file PCFAX200.FNT is used. The .FNT
files used by the FAX server are compatible with Windows 3 bitmapped fonts, and so may be replaced by
other Windows fonts if you prefer. However, the replacement font you use should have the correct
horizontal and vertical resolutions - the FAX server does not attempt to scale the font - and should be
fixed width (in fact, variable width fonts are accepted, but tend not to produce good results, because no
attempt is made to correct placement of tabular data, columns etc).

A text file may include "macro" fields which are replaced by the conversion process with cover sheet
details, or with embedded PCX or TIFF images. A example of how this is done can be found in the file
COVER.TEM, which although it is used for a special purpose (to control the layout of the cover sheet), is
not special in terms of any macros it uses - these can in fact be used by any text document.

Odyssey FAX Server
Cover Sheet Generation
When the Odyssey FAX server is asked to generate a cover sheet, it simply runs its normal ASCII to FAX
conversion procedure on the file COVER.TEM (a text file stored in the Odyssey directory), and then
transmits the resulting FAX image ahead of the main FAX. COVER.TEM contains several macro fields
which are expanded into their transmit-time values using the details entered by you into the Send FAX...
dialog.

The best way to understand the purpose of COVER.TEM is to look at it with an ASCII viewer/editor (such
as the integrated Odyssey text editor), or copy it to your printer. You will see that COVER.TEM is simply a
template which defines the format which the FAX Server will use for its automatically generated cover
sheets.

Note the fields such as '%%date___' which you will see in COVER.TEM. These are the macro fields
which are automatically filled in by the routine which converts text files to .FAX files. Where a macro field
is padded out with underscores, as in the date example shown, then the conversion process will pad the
field out to the same length, but using space characters instead.

COVER.TEM uses all of the macro types provided, and may be used as a guide as to which macros are
available, and how they are used.

Notice that although this section has concentrated on COVER.TEM, the same substitutions can
actually be performed on any text file which the Odyssey FAX server converts, provided that the text file
uses the appropriate macro field. One particularly good use for this feature in a normal text file is to
embed graphics, such as your company logo or signature.

Odyssey FAX Server
Embedding Graphics in a FAX
Take particular note of the "%%logo=..." macro in COVER.TEM. As its name implies, this macro is
primarily designed to allow you to embed your company logo in the outgoing cover sheet, but can in fact
be used anywhere in an ASCII document to embed any graphics image - for example you may wish to
embed your signature at the end of the FAX. Some tips on creating a graphics file containing your own
company logo or signature are given elsewhere.

The image imported into a FAX can be in either PCX or TIFF format. You should completely specify the
image file name in the importing document, including path, and in particular you should remember to
include the file extension .PCX or .TIF on the %%logo= line so that the FAX server knows which image
format to expect.

Accepted Image Formats

As mentioned above, the FAX server allows you to embed PCX or TIFF images in an outgoing FAX.
However, you should be aware that in common with other applications which support graphics
interchange, this software does not guarantee to read absolutely any image which might possibly be
encoded using one of these picture formats, however the resolutions which are accepted are likely to
include all you will ever meet in real life.

In the case of PCX files (PCX5), the FAX server accepts 1, 4, 8 and 24 bit color images. Monochrome
and 256 color images are encoded using a single color plane. 4 and 24 bit color images are accepted in
either packed or planar forms. "Color" includes grayscale.

In the case of TIFF files, the FAX server accepts the same resolutions as for PCX, and recognises the
standard set of tags referred to in the TIFF 6.0 baseline specification. The TIFF image data must be either
uncompressed, or packed using "packbits" (RLE) compression. Compression using Huffman (CCITT),
LZW, or JPEG is not supported.

Where a monochrome image is imported, it will be copied to the outgoing FAX file as is. In the case of
grayscale or color 4/8/24 bit images the destination image will be automatically converted to gray
halftones (FAX images are monochrome, so it simply isn't possible to retain the original colors).

The PCX or TIFF reader does not attempt to downscale an image to fit on the page. The image will be
clipped if it is either too wide or too deep.

Odyssey FAX Server
How to embed company logos or signatures
To embed any sort of graphic image in a fax, you simply make use of the "%%logo=<filename>" macro in
the ASCII text file from which the FAX is generated. This help topic concentrates on how you go about
generating bitmapped versions of your company logo and/or personal signature, saved in PCX format at
the right resolution, which you can them embed in your FAX.

The best (and easiest) way to create PCX files containing your logo and signature is as follows:-

· Get a sheet of headed paper with your company logo, and sign it about half way down the page.

· Run Odyssey, make sure FAX receive is enabled in the Setup|Fax... dialog, then activate the
Odyssey FAX server by selecting the Window|FAX... menu item.

· Borrow a friends dedicated FAX machine, and FAX the above page to yourself (ie. to the PC running
Odyssey FAX server). Be sure to use the high resolution option (sometimes called "detail" or
"fine") provided by the FAX machine.

· Use the Command|Export FAX... menu option to export the FAX page as a .PCX file. You could also
export in TIFF format, but a) TIFF files are significantly larger, and b) many simple graphics programs
seem to have more trouble reading perfectly valid TIFF files than they do when reading the simpler
PCX format.

· Use one of the many easily available commercial or shareware graphics paint programs (eg,
Windows Paintbrush) to clean up the detail in the image. Be aware that some simple paint programs
have problems with images as large as this (a full page 200 DPI fax is quite large when
decompressed and loaded into memory - nearly half a megabyte). Cut out the logo and signature
using the cut or trim tools provided by the graphics package, saving each to a new PCX file in the
Odyssey FAX directory. Don't add any margin on the left of the clipped image unless you want the
image to be indented by more than the amount Odyssey normally adds. You may wish to further edit
each of the clipped images to improve their quality.

You now have separate PCX versions of your company logo and signature, which can be embedded as
needed in any ASCII document, simply by typing in a line such as :-

%%logo = C:\WINODY\FAXRECV\MYSIG.PCX

into the document.

You could also, of course, generate these images using a handheld or flatbed scanner if you happen to
own one, but your problem there will be scaling the image to the right size at FAX resolution - the method
described above produces a poorer quality image to begin with, but guarantees correct scaling. If you do
decide to use a scanner then the image should be scanned at 200 dpi.

Odyssey FAX Server
Script Control Interface
The Odyssey FAX Server can be controlled by a script, using the generic DLL interface functions added in
Odyssey 2.0. See the Script Language Reference for a description of the LoadDLL(), UnloadDLL() and
SendMessage() script commands.

The following sections describe the command messages recognised by the FAX server script interface. A
substantial script demonstrating these commands is included on the distribution disk - see
TESTFAX.SCR, which you should find in your Odyssey directory.

In the examples shown, "fax" is assumed to be the numeric handle returned by a previous
LoadDLL("FAXSERV.DLL") call.

For brevity in these examples, the string argument is often shown as a string-literal, when in
actual fact it must always be a string-variable (the TESTFAX.SCR declares its own version of
SendMessage which accepts literal strings - you must be careful however not to use that routine with a
message that returns a result in the string variable!) :-

INIT

String argument =>> unused
Numeric argument =>> unused

Forces the modem into FAX mode, and performs internal initialisation of the FAX server. This message is
required, and must be the first command sent to the DLL after it is loaded.

Example: SendMessage(fax, "INIT", "", 0);

PRINT

String argument =>> "filename pagelist"<R>
Numeric argument =>> unused

Prints selected FAX pages to the printer. The filename and pagelist must be separated by a single space,
and there must be no other spaces in the string. The pagelist is formatted as described in the description
of the Print FAX... dialog.

Example: SendMessage(fax, "PRINT", "myfax.fax 1-99", 0);

EXPORT

String argument =>> "faxfilename outfilename pagelist"
Numeric argument =>> unused

Exports selected pages from a fax file in either PCX or TIFF format, decided by the extension to the
outfilename field. The three fields in the string argument correspond to the three fields on the Export
FAX... dialog.

Example: SendMessage(fax, "EXPORT", "my.fax page.TIF 1-99", 0);

IMPORT

String argument =>> filename_variable
Numeric argument =>> unused

Converts PCX,TIFF or ASCII text files to FAX format and writes the result to the FAX directory ready for
transmission. Note that the string argument must be a variable, since it will be changed by the FAX server
to the name of the FAX file just created. You can then use the destination file name as a parameter for a
SET-FILETOSEND command.

Example: fnvar := "myfile.txt";
SendMessage(fax, "IMPORT", fnvar, 0);
Write("Dest file was: ",fnvar);

ERASE

String argument =>> "filename"
Numeric argument =>> unused

Erases a FAX file from the FAX directory, normally used after the FAX is successfully transmitted. Using
this command is more reliable than using Fdelete() because you don't have to know (in the script) where
the FAX directory is, plus the FAX server will force a .FAX extension regardless of the extension used in
the name you pass - so you could pass it the name of the source file and the correct FAX file will still be
erased.

Example: SendMessage(fax, "ERASE", "myfile.txt", 0);

SET-LOCALID

String argument =>> "Local ID"
Numeric argument =>> unused

Sets the ID string of the local FAX station. See the description of the equivalent menu option for
limitations on the characters which can be used in the ID string. The string must be no longer than 20
chars.

Example: SendMessage(fax, "SET-LOCALID", "Skyro Software Ltd.", 0);

SET-COVERSHEET

String argument =>> unused
Numeric argument =>> 0 or 1

Enables or disables the "cover sheet" option. 1 enables the option, 0 disables it.

Example: SendMessage(fax, "SET-COVERSHEET", "", 1);

SET-DETAIL

String argument =>> unused
Numeric argument =>> 0 or 1

Enables or disables the "Detail" option. 1 enables the option, 0 disables it.

Example: SendMessage(fax, "SET-DETAIL", "", 1);

SET-FAXDIR

String argument =>> "faxdirectory"
Numeric argument =>> unused

Sets the directory to be used by the FAX server for received fax documents, and files which have been
converted to FAX format prior to transmission.

Example: SendMessage(fax, "SET-FAXDIR","c:\winody\fax", 0);

SET-FILETOSEND

String argument =>> "filename"
Numeric argument =>> unused

Sets the file which will be transmitted by the next "SEND" command. This should be the name of a .FAX
file, not a text file; in other words, you should send an IMPORT command first if you want to send an
ASCII file.

Example: SendMessage(fax, "SET-FILETOSEND","my.FAX", 0);

SET-NUMBER

String argument =>> "phone number"
Numeric argument =>> unused

Sets the number which will be dialed at the next "SEND" command.

Example: SendMessage(fax, "SET-NUMBER", "0123-45678", 0);

SET-REFORMAT

String argument =>> unused
Numeric argument =>> 0 or 1

This command sets the "reformat" option normally found in the send-fax dialog. If set to 1, an IMPORT
command will reformat text lines which exceed the right margin. If set to 0, long lines will be truncated at
the right margin.

Example: SendMessage(fax, "SET-REFORMAT", "", 1);

SET-FROM

String argument =>> "your-name"
Numeric argument =>> unused

Sets the value of the "From" string variable used by the cover sheet generator. Not required if cover sheet
generation is disabled.

Example: SendMessage(fax, "SET-FROM","Joe Bloggs", 0);

SET-TO

String argument =>> "dest-company-name"
Numeric argument =>> unused

Sets the value of the "To" string variable used by the cover sheet generator. Not required if cover sheet
generation is disabled.

Example: SendMessage(fax, "SET-TO","ACME Products Inc.", 0);

SET-ATTN

String argument =>> "dest-person-name"
Numeric argument =>> unused

Sets the value of the "Attn" string variable used by the cover sheet generator. Not required if cover sheet
generation is disabled.

Example: SendMessage(fax, "SET-ATTN","John Smith", 0);

SET-OREF

String argument =>> "our-reference"
Numeric argument =>> unused

Sets the value of the "oref" string variable used by the cover sheet generator. Not required if cover sheet
generation is disabled.

Example: SendMessage(fax, "SET-OREF","JB-001", 0);

SET-YREF

String argument =>> "your-reference"
Numeric argument =>> unused

Sets the value of the "yref" string variable used by the cover sheet generator. Not required if cover sheet
generation is disabled.

Example: SendMessage(fax, "SET-YREF","your ref", 0);

SET-SUBJECT

String argument =>> "what-this-fax-is-about"
Numeric argument =>> unused

Sets the value of the "subject" string variable used by the cover sheet generator. Not required if cover
sheet generation is disabled.

Example: SendMessage(fax, "SET-SUBJECT","test of fax script", 0);

SET-ADDINFO

String argument =>> "addinfo.txt file name"
Numeric argument =>> unused

This sets the name of a second file which will be imported and whose text will be appended after the
ADDITIONAL INFO line of the cover sheet. This has no effect if cover sheet generation is not enabled. If
cover sheet generation is enabled, and an additional info file is set, then you can pass an empty string to
the SET-FILETOSEND command if you only want to send the cover sheet.

Example: SendMessage(fax, "SET-ADDINFO","addinfo.txt", 0);

SEND

String argument =>> unused
Numeric argument =>> unused

Dials the number given by the SET-NUMBER command, and sends the FAX named by the SET-
FILETOSEND command. If the number field was an empty string then the FAX server will give the user
the opportunity to dial manually (note that the script will lose control until a user provides a keyboard
response - if you don't wish that to happen then always supply a phone number). If cover sheet
generation is enabled then the FAX server will create and prepend a cover sheet before sending the FAX.
If FILETOSEND is an empty string, and ADDINFO is not, and cover sheet generation is enabled, then
only the cover sheet will be sent.

Example: SendMessage(fax, "SEND","", 0);

RECEIVE

String argument =>> string-variable
Numeric argument =>> unused

This command should only be sent when a ringing signal has been detected (ie. by receiving the RING
response from the modem). The FAX server instructs the modem to answer the call, and then it receives
the FAX, storing it in the FAX directory. You do NOT pass a name for the received FAX in the string
variable; in fact the FAX server always creates a temporary name itself, which is guaranteed to be unique,
and passes back that name to you in the string variable.

Example: SendMessage(fax, "RECEIVE", rxfilename, 0);

SAVE-SETTINGS

String argument =>> unused
Numeric argument =>> unused

Normally, any changes you make to FAX server variables (using SET-xxxx commands) will be lost when
the FAX server module is discarded. Send this command if you want to make the changes permanent.

Example: SendMessage(fax, "SAVE-SETTINGS", "", 0);

END-SESSION

String argument =>> unused
Numeric argument =>> unused

This command takes the modem out of FAX mode and restores it to data mode. This command is
required, and should be the last command sent to the FAX module immediately before calling
UnloadDLL().

Example: SendMessage(fax, "END-SESSION", "", 0);

Using Odyssey
The Archive Viewer
The Odyssey Archive Viewer window class is designed to provide supplementary services for an
Odyssey Directory Viewer window. Particularly, it allows you to view ARC, ZIP and LZH compressed
archives within Odyssey, quickly view and extract single files from those archive formats, or extract the
entire archive contents to a subdirectory on your hard disk.

Please select one of the following topics for further information. You can also step through these topics in
order by selecting the first, and then using the browse buttons to move between topics.

Introducing the Odyssey Archive Viewer.
Viewing a ZIP, ARC or LZH Archive.
Viewing a file stored in an Archive.
Unpacking an Archive.

See also:
ARC
LZH
ZIP

The Odyssey Archive Viewer
Introducing the Odyssey Archive Viewer.
The Odyssey Archive Viewer feature is intended to supplement the capabilities of an Odyssey Directory
Viewer, so we shall start this introduction by recapping the purpose of the latter Odyssey feature.

You may have already gathered that the Directory Viewer is primarily intended to allow you to perform
common "housekeeping" tasks on the files which you have downloaded from a BBS. To that end, it
displays a list of files which you can then double-click on in order to view them, and thus decide if you
wish to keep them around. "Viewing" is mostly done using other Odyssey window classes, such as a text
editor window, or a bitmap viewer window.

If you think about the sort of files you are likely to have downloaded from a BBS, some will be text files,
some will be bitmaps, but most (probably the greatest majority) will be compressed archive files of some
sort; and of those, most will be in the ZIP format. Therefore, if Odyssey is to allow you to view most of the
files you have downloaded, allowing you to view compressed archive files would appear to be an
important requirement - hence the existance of this Archive Viewer window class within Odyssey.

Note that there is no menu option anywhere within Odyssey to open an archive file; just as there is no
such option for opening a bitmap file. An Archive Viewer window is not opened directly, instead you open
a Directory Viewer window, and then double-click on any file you wish to view, and if the selected file is a
supported archive format then an Odyssey Archive Viewer window is opened.

There are a great number of archive formats in existance, most of which are seldom used, so it simply
isn't practical for Odyssey to support every single one of them. Instead, Odyssey currently supports the
three most popular DOS archiving formats, which we believe are the ARC, ZIP and LZH formats. We shall
probably add support for some popular Unix archiving formats (eg. .zoo, .gz) in the future, for the benefit
of Internet surfers.

Odyssey's ability to read the ARC, ZIP and LZH formats is completely internal and integrated, ie. you do
NOT need to have, for example, copies of PKARC, PKZIP or LHA etc somewhere on your path in order to
view these files.

Please read the following notes about the three archive formats which Odyssey supports :-

ARC: was originally the format used by the utility of the same name published by System Enhancement
Associates (SEA). This was the de-facto standard BBS archive format for several years, and so you can
still find a great many BBS files in this format, even though the ARC format has largely been supplanted
by ZIP etc for newer uploads. The SEA ARC utility supported a number of compression methods, starting
with none (ie. file stored with no compression), then run-length encoding, and then several variations on
the Lempel-Ziv-Welsh (LZW) scheme, each later version of the scheme slightly increasing in
sophistication (eg. moving from fixed length codes to variable length codes). Phil Katz of PKWare also
produced an ARC compatible utility called PKARC, and also added a new "Squashed" compression
method - another LZW variant. The Odyssey ARC format reader handles all ARC and PKARC
compression methods.

ZIP: this is the current de-facto standard BBS archive format, at least for DOS files. ZIP improves on
ARC/PKARC by providing faster decompression, better compression ratios, and the ability to store
complete directory trees in the archive (instead of the simple list of unqualified file names used by ARC).
Although ZIP supports a number of different compression methods, the most important algorithms are
derived from the "Sliding Dictionary" Lempel-Ziv schemes (ie. where a string which has previously
occurred in the file is replaced by a code telling the reader the position and length of the previous
occurrence). ZIP also uses a secondary static Huffman encoding to further compress the character,
length and position codes. Later ZIP algorithms find efficient ways to handle large (32k) dictionary sizes.
The popularity of ZIP was also boosted by the fact that the author (Phil Katz of PKWare again), published
details of the algorithms used, which allowed programmers on other platforms (eg. Unix) to handle this

format. The Odyssey ZIP reader handles all compression methods supported by PKZIP v2.04g and
earlier (ie. up to and including the "Deflate" compression method).

LZH: the format used by the LHARC (later called LHA) utility, LZH has attained a respectable following
among BBS users. Initially this was because, while LHARC was significantly slower at compression than
PKZIP: a) decompression wasn't much slower, b) compression ratios were higher, c) LHARC was free, d)
the source was also available for free, which made it easy to port the format to non-DOS platforms.
LHARC also had the ability to create self extracting archives with a surprisingly small file size overhead.
Subsequent PKZIP versions pretty much matched LHA on compression ratio, though the other attractions
of LHA remained. The compression algorithms used by LZH are variants on the "sliding window LZ with
secondary Huffman encoding" theme, much like PKZIP (the LZH word itself is an acronym for "Lempel-
Ziv-Huffman"). Unfortunately, the only available documentation on the LZH algorithms resides in the
aforementioned freely available sources, much of which consists (at least for later methods) of sparsely
commented assembly language modules. For this reason Odyssey does NOT support all compression
methods supported by LHA. Instead, we support those methods which we have been able to work out,
specifically the -lh0- (ie. the "stored" or "uncompressed") method, the "-lh1-" method which was used by
LHARC 1.13, and the "-lh5-" format used by LHA 2.xx. One reason that we have not implemented other
methods is because we have been unable to find .LZH archives containing files compressed with these
other algorithms, and thus would have been unable to test any code we developed. The latter point
hopefully means that you won't find any such files either, ie. the lack of support for these methods will not
inconvenience you in the least. LZH, like ZIP, has the ability to store entire directory trees in the archive.

ZIP and LZH formats support encryption of files with a text password, however Odyssey can only decrypt
files which were encrypted and use the ZIP format.

The Odyssey Archive Viewer
Viewing a ZIP, ARC or LZH Archive.
To open an Odyssey Archive Viewer window, simply double-click on a ZIP, ARC or LZH file shown in the
file list of a Directory Viewer file list panel. The Odyssey Archive Viewer window consists of a standard
Windows multiple selection listbox, each entry providing details of one of the files in the selected archive.
This list looks pretty much like what you would get if you typed "pkzip -v archive" from DOS (or the
equivalent, for other archive formats). A scrollbar is provided to allow you to scroll up and down the list of
compressed files.

Odyssey provides several options in the Archive Viewer Command menu which allows you to manipulate
the list of files shown, for example you can specify the type of files to be listed (by means of a wildcard file
specification), as well as the sort order of the file list - the sorting options are very much like those
provided by the Directory Viewer feature, with the addition of a sort order of None, which means that files
are listed in the order they are stored.

The Odyssey Archive Viewer
Viewing a file stored in an Archive.
This feature allows you to view files in an archive without having to decompress the entire archive first.

Once the Odyssey Archive Viewer is opened, it is a simple matter to view any single file from that
archive: simply double-click on the entry for that file in the list displayed. Just as in the case of the
Odyssey Directory Viewer window, double-clicking on a listed file causes Odyssey to open up a
secondary viewing window which is specialised towards the type of file being viewed. For example, if you
click on a BMP, GIF, JPG or FAX file then a bitmap viewer is opened, if you click on a windows .HLP file
then the Windows Help system is used to animate that help file. You can even double-click on a ZIP, ARC
or LZH file stored in the first archive, and a second Archive Viewer window opens, and you can then
proceed to view the files in that archive also!

In each of the cases mentioned, Odyssey implements the feature by decompressing the selected file into
a temporary file, which it then creates a viewing window for. This temporary file is normally deleted when
the associated viewing window closes. Note however that if the selected file was a Windows .HLP file or
an .EXE file then the appropriate "viewer" is actually a separate program, which may not necessarily
terminate before Odyssey does; and Odyssey obviously cannot delete that temporary file if Odyssey is no
longer running. In short, to avoid cluttering your disk you should always make it your practice to close any
viewing windows before you shut down Odyssey itself.

The Odyssey Archive Viewer
Unpacking an Archive.
If you decide that you want to unpack the contents of a ZIP, ARC or LZH file, you simply select the
Command|Extract files... option from the Archive Viewer menu, or click on the Extract files toolbar
button.

You will be presented with the Extract files... dialog, in which you give details such as the target directory
into which the files should be unpacked (if the archive contains a directory tree, this could become the
root directory of that directory tree). You also select whether to unpack all files from the archive (see
note), or whether to unpack only those files which are selected in the multiple selection listbox used by
the Archive Viewer window. Finally, you also specify whether or not Odyssey should overwrite existing
files, and also (optionally) set a password for decryption, if the files are encrypted.

Unpacking "All files" means unpacking all files shown in the listbox, which may not necessarily be
the same as all files stored in the archive. For example, if you tell the Archive Viewer to list all files
matching the "*.C" pattern, and then select "Unpack all files" in the Extract files dialog, then the archive
viewer will unpack all files in the archive which match the "*.C" pattern. If you really intend to unpack
every file stored in the archive you should make sure that the file type shown in square brackets in the
Archive Viewer window caption is either "[*]" or "[*.*]" (select Command|Show files of type... or click the
Show files of type... toolbar button to change the pattern).

Using Odyssey
Odyssey Dialogs
Press F1 while any dialog is displayed, for context sensitive help specific to that dialog.

Odyssey Dialogs
Dialing Directory Dialog
You reach the dialing directory dialog by selecting Command|Dial... from the main menu, or by clicking
the "phone" toolbar button, or by pressing ALT+N.The dialing directory is split into two parts - a list of
services in a large panel on the left, and an array of action buttons on the right.

The service list is the large panel on the left hand side which occupies most of the dialing directory dialog.
Each directory entry occupies one screen line, a format which makes it convenient for you to quickly scan
the directory, and for point and shoot dialing. The information displayed is however only a brief summary
of the much more detailed information kept about each entry. To see and edit the extra detail you should
highlight the directory item that interests you and press the Edit action button. The action panel on the
right contains a number of other buttons which will be described in the topics below.

Adding New Directory Entries
Editing Directory Entries
Dialing a number
Resetting Call Statistics
What Odyssey does when it Dials

See also:
The Edit Dialing Directory Entry dialog.

Dialing Directory Dialog
Adding New Directory Entries
Adding a new directory entry consists of selecting a slot for the new entry, and then editing it to give the
correct information about the new service.

You can create a new entry by using the Insert Line button to insert a blank entry at the current position,
which you would then edit. Alternatively, if the new entry will be similar to an existing one, you can cut the
other entry with the Cut button or the DEL key, then paste it back twice using the Paste button or the INS
key. That gives you two identical entries, one of which you can modify. A final alternative is simply to move
to one of the free slots near the end of the dialing directory and edit that.

Dialing Directory Dialog
Editing Directory Entries
Edit a directory entry by first highlighting it using the arrow keys, then click the Edit button. This causes
the Dialing Directory Edit dialog to appear which displays the current values of all the details Odyssey
keeps for that entry, and allows you to change them.

Dialing Directory Dialog
Dialing a Number
There are two ways of dialing a number from the dialing directory.

Point and shoot dialing is the simplest. To do that you use the mouse to select the entry for the service
you want to call, then click the Dial action button. Alternatively, you can simply double click on the service
entry to dial. In either case, Odyssey will then dial the number, and if necessary redial, until a connection
is established or it has made the maximum number of dial attempts defined in the Setup/Modem... menu.

Tagged Dialing is more flexible/powerful, but takes a little more setting up. You first tag any entry by
selecting it and then clicking the Tag Single button. Alternatively, you can simply click the entry with the
right mouse button to both select it and toggle the tag attribute. Once the entry is tagged you should then
click the Dial Tagged action button (or press ALT+T), which causes Odyssey to dial the number you just
tagged. The main point that hasn't been mentioned yet is that you may tag as many numbers as you like,
and when you initiate tagged dialing, Odyssey will dial each number in turn until it makes a connection.

Odyssey offers a further action button - Tag by Key - which can be used to set tags on all entries with a
particular key. Pressing ALT-K on the keyboard has the same effect. You can clear all the tags from
tagged items by clicking the Clear Tags action button.

Dialing Directory Dialog
Resetting Call Statistics
Every time you complete a call, Odyssey updates the appropriate dialing directory entry for the service:
incrementing the count of the number of calls, and also recording the time, date and duration of the call.

If you make a copy of a directory entry using the cut and paste buttons then these statistics are copied as
well. If you want to reset the statistics for the new entry you can do so by selecting the entry and clicking
the Reset Stats action button.

Dialing Directory Dialog
What Odyssey does when it Dials
The following is the procedure which Odyssey follows when dialing any number, or any queue of
numbers. Understanding this procedure may allow you to make more efficient use of the Odyssey dialing
feature, especially in conjunction with a script. During the dialing process Odyssey makes use of
information defined in the dialing directory entry (or entries), and also from the modem configuration
available in the Setup/Modem... dialogs.

1. The first thing that the dialer does is make up a list (queue) of the different numbers it needs to dial. It
displays a window showing as much of this queue as possible. If you used point and shoot dialing
then the queue will contain only one number. If you asked Odyssey to dial all "tagged" numbers then
the queue may contain one or more numbers. If you used the "Continue dialing" option of the
Command menu then the dial queue is carried over from a previous dialing procedure. Odyssey now
marks the first number in the queue as the "next number to dial" and moves to step 2, which is the
start of the dialing loop.

2. Odyssey selects the number from the dial queue which is marked as the "next number to dial",
highlights this queue entry in the dial progress window, and then examines what modem configuration
changes need to be made for this number.

3. If modem reconfiguration is necessary (this is the first dial attempt, or the necessary config is different
from the last dial attempt, or "Always init" is enabled in the Setup|Modem configuration section), then
Odyssey selects and transmits an init string to the modem. The selected init string is either the "Dialer
init string", or one of the error correction strings, depending on the settings in the dialing directory and
Setup/Modem menu. Odyssey looks for a reply from the modem to the init string. If it gets one we
proceed to the next step, otherwise an error message is generated saying "Modem does not respond
to init", and we abort here.

4. The Odyssey dialer now changes the comm port baud rate and parity settings to that specified in the
current directory entry, transmits the dial command to the modem, and waits for a response. See the
description of the Setup|Modem dialogs for details of how the dialing command is constructed.

5. The dialer starts counting down from the timeout figure allowed for a connection (this value is
configured in the setup menu). If the modem fails to give a recognised response in time, or if it
responds with a connect failure message then we go to step 6, otherwise we go to step 7.

6. This step is reached if the last dial attempt failed. If there is more than one number in the dial queue
then we mark the next number as the "next number to dial". If we have already made the maximum
number of dial attempts on this number then we issue an error message and abort, otherwise we
pause for the number of seconds specified in the "Delay before redial" setup option, then return to
step 2.

7. We get here if a connection has successfully been established to a dialed number. The dialer now
performs some post-connection configuration:

· The successful number is removed from the dial queue. This leaves the remaining numbers
(if any) in the queue, to be processed by the Command|Continue Dialing menu command.

· If the "Baud Rate Detection" option is enabled, then the dialer examines the full connect
message, and changes the comm port baud rate to the speed which the modem reported. If
Software MNP is enabled, and error correction is requested, then the software MNP engine is
alerted, and starts up. The appropriate terminal emulation is loaded, along with the
associated keyboard file (if any). If text logging is enabled then the appropriate logging mode
is initiated.

· If a script is attached to the directory entry (ie. if a script exists named <KEY>.SCR), then that
script is started up, and control is passed to it. Otherwise, control is passed to the terminal
keyboard.

The dialing procedure is now complete. However, Odyssey takes certain additional steps when the call is
completed.

1. If text logging was started by the dialer, then the log file is closed when the call is completed. Odyssey
will not automatically close a log file which was not opened by the dialer, ie. one which was opened
manually or by a script. In the latter case it is up to the user or script which opened the log file to also
close it.

2. Likewise, if a terminal emulation was loaded by the dialer, then Odyssey will return to the default
emulation when the call is completed, if the default is different from the selected terminal.

3. If "Event logging" is enabled in the setup menu, then the dialer will record the service name and
duration of the call just completed.

Odyssey Dialogs
Editing a Dialing Directory Entry
You edit a dialing directory entry by first selecting it with the mouse, and then clicking the Edit button. This
causes the Dialing Directory Edit dialog to appear which displays the current values of all the details
Odyssey keeps for that entry, and allows you to change them. The fields in this dialog are described
below.

Key
Service
Phone number
CR xx translation
Strip parity bits
Baud rate
Terminal emulation
Parity
Text Logging
Error Correction

See also: The Dialing Directory dialog.

Key: The key field is used to identify a dialing directory entry. It is up to you whether the keys should be
unique, or whether several related entries should all have the same key. The key is used by Odyssey
when it wants to retrieve files related to a directory entry, such as a script file, whose name is derived from
the key. You use the key yourself if you want to tag several directory entries by key. We recommend that
you do give every directory entry a key, which must be no longer than eight characters. This is a string
field; to edit you just select the field and start typing.

Service: The Service Name is exactly what it sounds - a readable and concise name for the service.
Odyssey does not use this name internally except to tell you who it is calling when it is dialing the number.
You may therefore have anything in this field that you like. This is a string field; to edit you just select the
field and start typing.

Phone number: This field should contain the telephone number for the service. The text in this field may
include digits, hyphens and spaces. It doesn't matter if your particular choice of modem takes a dislike to
the latter two characters in a dial command, because Odyssey in any case strips them out when
constructing the command.

You may also embed @x and %x prefix codes in the telephone number, where x is a letter from A to J
selecting one of the number prefixes defined in the setup menu. @ prefixes are expanded where they
occur in the number. % prefixes are prepended to the start of the eventual dial command. These prefixes
are configured in the setup menu - see the description of the Setup|Modem dialog. This is a string field; to
edit you just select the field and start typing.

CR in -> CRLF: Odyssey can, if you wish, translate all incoming carriage return characters into CRLF
pairs. If lines overwrite each other as they appear on your terminal then you should enable this option.
The field is disabled by default, which leaves incoming carriage returns untouched.

CR out - CRLF: Odyssey can, if this field is selected, translate all outgoing carriage return characters into
CRLF pairs. This field is disabled by default, which leaves outgoing carriage returns untouched.

Strip parity bits: If you normally connect to a long distance host using a low cost X.25 network (eg.
Tymnet or DialPlus), you may sometimes find that the network expects parity checking while the host
itself does not. If you enable even parity to satisfy the network then file transfers with the host system fail
to work properly. On the other hand, if you leave parity checking disabled then you get strange semi-
graphic characters appearing on your terminal until you manage to log onto the host. This may even
break your login script. The solution is to leave parity set to None and instead enable parity bit stripping.
When enabled this setting tells Odyssey to mask off the high (parity) bit of every character it displays on
the terminal, thus you see no strange characters appearing. This will not however prevent file transfers
from working correctly, since parity bit stripping is only applied to characters displayed in the terminal
window. This checkbox is enabled by default.

Baud rate (bps): This field tells Odyssey what baud rate the service expects. The default baud rate is
2400 bps. This is a listbox field, so to change the baud rate field you don't type the number - instead you
pull down the list of baud rates by clicking on the "down arrow" icon, then click on the appropriate entry
from the list of supported baud rates which is presented to you.

You will notice that the baud rate menu includes a Default setting. Choosing this option means that the
dialer will use whatever baud rate was last set in the Setup|Comms... submenu, or the baud rate at
startup, if no change has been made in the current session. This is useful for users who own two or more
modems, capable of different speeds, since it means that you don't need to edit every directory entry
each time you switch between modems - you can just change the baud rate in one place, and the change
will affect all relevant dialing directory entries.

Terminal Emulation: The terminal emulation field tells Odyssey what terminal type the service expects.
To change the terminal emulation field you simply pull down the list of supported emulations and select
the one you need. If you select ANSI emulation then Odyssey will automatically disable parity bit stripping,
since that emulation is usually expected to be capable of displaying IBM PC (Windows OEM character
set) characters with codes greater than 127. The default terminal type is TTY.

Parity: The parity field tells Odyssey what type of parity checking the service expects. This section of the
dialog is a group of radio buttons. You change the parity type by using the mouse to select the radio
button which represents the parity type you need. Notice that Odyssey does not provide data bits or stop
bits fields in this dialog. This is because Odyssey assumes eight data bits any time you select "parity:
none", and it assumes seven data bits otherwise. Similar assumptions are made about stop bits. There is
no need for you to concern yourself with whether or not Odysseys assumptions are correct - in the real
world these assumptions are always correct, hence there is no need for you to waste time entering data
into unnecessary fields. The default for this section is eight data bits, no parity.

Odyssey Dialogs
Edit Dialing Directory Entry
Text Logging: Text logging (or text capture) allows you to record the characters received by Odyssey
during an online session. Odyssey provides various text logging modes which you control by clicking the
appropriate radio button or check box in the text logging group. Available modes are:-

Off - No text logging is performed (the default).
Create new file - Text logging is enabled, any existing log file for this service is erased, and

data for this session is written to a new file.
Append existing file - Text logging is enabled, any existing file is opened, and data for the latest call

is appended to the old data.

The Raw Logging checkbox controls what Odyssey does with terminal emulation control sequences
(sometimes called escape sequences), if text logging is enabled and a non-TTY emulation is used. If Raw
Logging is selected then Odyssey records the escape sequences directly in the log file. If Raw Logging is
not selected then Odyssey attempts to strip these escape sequences out, in order to produce a clean
ASCII text file. Note that production of a usable flat ASCII file cannot be guaranteed if the host used
complex cursor movements or erase operations to update the display. The ASCII conversion feature
works best when the host paints the display in a TTY-like top to bottom scrolling fashion, and simply uses
terminal control sequences to change colors, fonts etc.

If Text Logging is enabled you may also provide a name for the log file using the file: field in the text
logging section of the dialog. If you don't, then Odyssey will use a default name of ODYSSEY.LOG. Only
the main part of the log file name is required, eg. "LOGFILE". Odyssey will add the .LOG extension itself,
and the file will be stored in the download directory (configured in the Setup|General... dialog), or the
current directory if that setup field is blank. This is a string field; to edit you just select the field and start
typing.

Odyssey Dialogs
Edit Dialing Directory Entry
Error correction: This field tells Odyssey whether or not the service described by this directory entry
supports error correction. This field should be filled in even if the error correction is to be handled by your
modem; this section does not apply solely to users of Odysseys software MNP feature.

This dialog section has four radio buttons, one of which should be selected to enable the appropriate error
correction mode. One of the four settings is applicable only to software MNP and is grayed out if software
MNP is disabled in setup. The settings provided are:-

Disable - This service does not support error correction. In this case Odyssey will transmit the
"disable error correction" string to the modem prior to dialing the number, if the appropriate modem
control string is not blank.

On, no compression - The service supports error correction, but you do not want to use data
compression, for example because you want to transfer .ZIP files with an MNP5 modem. In this case
Odyssey will transmit the "Enable Error Correction ONLY" string to the modem prior to dialing the
number, or will use software MNP4.

On, with compression - The service supports error correction. Odyssey will transmit the "Enable Error
Correction and Data Compression" string to the modem prior to dialing the number, or will use
software MNP5.

Forced - The service supports MNP, and you require Odyssey to abandon the attempt to establish a
connection if MNP negotiation fails. This setting is available only when using software MNP error
correction.

The default is Disable.

Odyssey Dialogs
Find String Dialog
The Find String dialog is displayed when you type Ctrl+Q F in one of the text editors, or when you select
the Find... option from the editor Command menu, or when you click the "magnifying glass" editor toolbar
button. The dialog contains the following fields:-

Find: is the string you want to find in the current document. The first time this dialog is displayed in any
session, this field will be blank. Thereafter, it will default to the string entered last time.

The Scope panel controls which parts of the current file is searched for the string. The panel contains
three radio buttons, one of which should be selected. The radio button options are :-

Local - Searching takes place from the cursor position onwards, but only strings found inside the
currently marked block are reported. If no block is currently marked then no strings will be found.

Global - Searching begins at top of file, and any occurrence of the string is reported (marked blocks
have no relevance to the search). In other words, this function always finds the first matching string in
the file, regardless of where the cursor was when the search started.

From cursor - Searching takes place in the region from the current cursor position to the end of the
file. The first matching string in that region is found, if it exists.

The Direction panel controls the direction of the search. Forwards searches forward in the file,
Backwards causes the search to progress backwards.

The Options panel provides miscellaneous search options:-

Case sensitive - If checked, then case (eg. ThisWord vs THISWORD) is significant in deciding
whether a given target string matches the search parameter. If not checked then case differences are
ignored.

Whole words only - If checked, then target strings will only be considered as matching the search
string if the target string is not part of a larger word. Eg. a search for "man" will not stop on
"mandrake".

Click on OK to begin the search, click on Cancel to abort the search. The Help button (or F1) displays
this help topic.

Odyssey Dialogs
Find and Replace Dialog
The Find and Replace dialog is displayed when you type Ctrl+Q A in one of the text editors, or when you
select the Replace... option from the editor Command menu, or when you click the "magnifying glass..."
editor toolbar button. The dialog contains the following fields:-

Find: is the string you want to find in the current document. The first time this dialog is displayed in any
session, this field will be blank. Thereafter, it will default to the string entered last time.

Replace with: is the string you want to replace the search string with. The first time this dialog is
displayed in any session, this field will be blank. Thereafter, it will default to the string entered in this field
last time.

The Scope panel controls which parts of the current file is searched for the string. The panel contains
three radio buttons, one of which should be selected. The radio button options are :-

Local - Searching takes place from the cursor position onwards, but only strings found inside the
currently marked block are reported. If no block is currently marked then no strings will be found.

Global - Searching begins at top of file, and any occurrence of the string is reported (marked blocks
have no relevance to the search). In other words, this function always finds the first matching string in
the file, regardless of where the cursor was when the search started.

From cursor - Searching takes place in the region from the current cursor position to the end of the
file. The first matching string in that region is found, if it exists.

The Direction panel controls the direction of the search. Forwards searches forward in the file,
Backwards causes the search to progress backwards.

The Options panel provides miscellaneous search options:-

Case sensitive - If checked, then case (eg. ThisWord vs THISWORD) is significant in deciding
whether a given target string matches the search parameter. If not checked then case differences are
ignored.

Whole words only - If checked, then target strings will only be considered as matching the search
string if the target string is not part of a larger word. Eg. a search for "man" will not stop on
"mandrake".

Ask before replacing - If checked, the editor will display a Yes/No dialog requesting confirmation of the
operation before any occurrence of the target string is replaced.

Replace all - If checked, all occurrences of the target string in the region defined by the Scope panel
are replaced. If not checked, only the first occurrence is replaced.

Click on OK to begin the search and replace operation, or click on Cancel to abort. The Help button (or
F1) displays this help topic.

Odyssey Dialogs
Print Fax Dialog
The Print FAX... dialog is displayed when you select Command|Print Fax... from the FAX server menu,
or when you click the FAX server "Print FAX" toolbar button.

This dialog allows you to print selected or all pages from a FAX file.

Fax file name: is the name of the FAX file to print. If you can't remember the name of the file then a
"search..." button is provided, which brings up a standard file selector dialog.

Page(s) to print: allows you to enter a list or range of page numbers (for example "1,2,5-99") - only those
pages are printed. It is not an error for you to enter a page range greater than that which actually exists in
the file (eg. printing with a page range of "1-99" guarantees to print all pages).

Click on OK to accept the values you have entered, click on Cancel to abandon the printing procedure.
Clicking on Help displays this help topic.

Odyssey Dialogs
Export Fax Dialog
The Export FAX... dialog is displayed when you select the Command|Export Fax... item from the FAX
server menu, or when you click the FAX server "Export FAX" toolbar button.

The .FAX format used by the FAX server module is a specialised multipage image format ideally suited for
FAX applications, but which is unique to the Odyssey FAX server. If you need to convert individual pages
into a more portable image format then you can do so using this dialog. PCX and TIFF formats are
supported as export formats.

The dialog contains the following fields:

FAX file name: is the name of the FAX file which contains the pages you wish to convert to PCX or TIFF
format. If you cannot remember the FAX file name then you can click the "search..." button, which
displays a standard file selector dialog.

PCX/TIF name: is the name which will be given to the destination file(s). Note that the name you enter
here will be used to derive more than one file name. For example "PAGE.PCX" would generate
PAGE00.PCX, PAGE01.PCX etc, depending on the page range you choose to export.

Pages to export: allows you to select which list or range of pages in the FAX file are to be exported, eg.
"1,2,5-99". It is not an error for you to enter a page range greater than that which actually exists in the file
(ie. exporting with a page range of "1-99" guarantees to export all pages).

Click on OK to accept the field values you have entered, or click on Cancel to abandon the export
procedure. Clicking on Help displays this help topic.

Odyssey Dialogs
File Selector Dialog
The File Selector Dialog is used when opening files, saving files with a new name, and in other
situations when a file name is required. The dialog allows you to enter the file name and path for the
operation about to be performed.

Notice the various components of the dialog: the "file name" field at the top, the "file type" listbox, the
"files" listbox to the bottom left, and the "directories" listbox to the bottom right.

The File Name: field is where you enter the "tail" part of the file name. If you enter an ambiguous name
here (ie, containing wildcards), then the "files" and "directories" listboxes will be updated to match the new
specifications. If the name is not ambiguous then you have made your selection.

The File Types listbox allows you to choose the type of file you are interested in - this is a quick way of
changing the default file extensions for the file list.

You can click on a file in the "files" listbox to select a file, then you click on OK to complete the selection.
Alternatively, double clicking on the file listing both selects and completes the selection in a single
operation. You can also double click on an entry in the "directories" listbox to change directories.

Click on OK to accept the current selection, Cancel to close the dialog without making a selection, or
Help to view this help topic.

Odyssey Dialogs
Show files of type...
The Show files of type... dialog is part of the Odyssey Directory Viewer subsystem, and appeared
because you clicked the "New file type" toolbar button, or because you selected the File|Show files of
type... menu item.

This dialog is used to change the wildcard search pattern which controls which files will be listed in the file
list panel of a directory viewer window. The dialog consists of one main field, which is where you type in
the new file type, for example MYFILE*.*. This field is actually a listbox - if you pull the listbox down you
will be presented with a list of common search masks, if the one you want is on this list that selecting that
item will be faster than typing it yourself.

Click on OK to accept the new search pattern, or click on Cancel to retain the existing search pattern.
Clicking the Help button displays this help topic.

Odyssey Dialogs
Select...
The Select... dialog is part of the Odyssey Directory Viewer subsystem, and appeared because you
selected the File|Select... menu item.

This dialog allows you to select or deselect files by name, rather than clicking on the files with the mouse.

In the File type field you enter a file specification (eg. *.TXT) which matches the names of files you would
like to select or deselect. This field is actually a listbox, if you open the listbox you will be presented with a
list of common file specifications. If the specification you want is on the list then selecting that listbox item
will be faster than typing in the specification yourself.

The next two fields on the dialog determine whether you are selecting or deselecting files. Click the
Select radio button if you want to select files, or click the Deselect radio button if you want to deselect
files.

Click on OK to begin selecting or deselecting files, or click on Cancel to leave the selection states as they
are. Clicking on Help displays this help topic.

Odyssey Dialogs
Extract files...
The Extract files... dialog is displayed when you select Command|Extract files... from the Archive
Viewer menu, or when you click on the "Extract files..." toolbar button. Both the menu and the relevant
toolbar are only visible when an Archive Viewer window is active. The dialog is used to supply Odyssey
with the details it needs in order to unpack the archived files. The fields on this dialog are as follows:-

Destination path: is the directory into which the compressed files will be copied as they are unpacked.
Contrary to most other places within Odyssey, you may name a directory which does not yet exist -
Odyssey will create the directory for you in that case. If the archive itself contains a directory tree, and you
have selected the "Restore directories" option also on this dialog, then the destination directory you enter
in this field will become the root directory for the directory tree stored in the archive (ie. Odyssey will
create all subdirectories in addition to the named target directory).

The Files to extract: panel contains two radio buttons and one checkbox. The two radio buttons are (as
always) mutually exclusive and are described as follows :-

· Extract all files - if this radio button is selected, then all files listed in the Archive Viewer listbox will
be unpacked, regardless of their selection state.

· Extract selected files only - if this radio button is selected, then only those files which are selected
(ie. highlighted) in the Archive Viewer listbox will be unpacked. This radio button will be disabled if
there are no files currently selected.

Also on the "Files to extract" panel, the "Restore directories" checkbox controls whether or not Odyssey
recreates the directory structure (if any) stored in the archive. If this option is enabled then the archived
directory tree will be restored, otherwise the path part of the archived file names will be ignore and the
uncompressed files will all be copied into a single subdirectory, ie. the directory named in the Destination
path field.

The radio buttons in the "Overwrite existing files" panel control what happens when Odyssey discovers
that a file it would like to unpack from an archive has a name and path which matches that of an existing
file. There are three radio buttons, which are, as usual, mutually exclusive. The meaning of the radio
button options are :-

· Always - Odyssey will overwrite any existing files without asking - USE WITH CARE!
· If confirmed by user - Odyssey will wimp out and ask you what to do when it finds that a file already

exists. If a file does already exist then Odyssey displays a dialog which gives you the choice of
overwriting it, or leaving the existing file (skipping the archived version), or cancelling the unarchiving
task altogether.

· If extracted file is newer - in the event of a name clash, Odyssey compares the date stamps of the
two files. If the archived file is newer, Odyssey overwrites the existing file (without asking), otherwise it
leaves the existing file intact, skipping to the next file in the archive.

Password for decryption: - This option applies to encrypted ZIPped files only. If a file is encrypted then
unpacking is only possible if you know the password which was used during the encryption. If you do
know that password then you should enter it here. This field is ignored for non-ZIP archive formats, and
for any archive which does not contain encrypted files.

Click the OK button to accept what you have entered, and to begin the archive unpacking process. Click
the Cancel button to abandon the unpacking process. Clicking the Help button causes this help topic to
appear.

Odyssey Help
Using Other Odyssey Features
Please select one of the topics below for information on a specific Odyssey feature.

File Transfer
Terminal Emulation
Text Logging
Using Scripts
Host mode
Chat mode
Playback mode
Command line recall
Event Logging
Keyboard Remapping
Script Compiler
Alternative Configurations

Odyssey Features
File Transfer
File Transfer is the general name given to any mechanism which provides a solution to the problem of
transferring data between computers. We are mainly interested here in serial file transfer, ie. transferring
files by means of the serial port. A serial file transfer system avoids the question of the compatibility of
disk drives and computers, and instead depends on both computers having compatible serial ports, which
is much more likely, since RS232 is almost universal in the computing world.

Serial file transfers can also take place over a telephone connection, which means that the other
computer could be on the other side of the world, or just in the next room, and yet you would use the
same procedure for copying the file. One problem with using the telephone network is that files could
potentially be damaged by line noise, and so any file transfer procedure we use should hopefully be able
to prevent this.

Ignoring all but serial file transfer, we can summarise by saying that file transfer is the task of transferring
a document held on one computer system to another computer system, optionally verifying that an
accurate copy was made, and optionally converting the transferred document into a form suitable for use
on the target computer system.

The topics below contain further information on file transfer using Odyssey :-

Uploads and Downloads
What is a file transfer protocol?
Why are there so many file transfer protocols?
Which is the Best Protocol?
PC to PC File Transfer
File Transfer via Modem
Summary of Protocols
ASCII transfers with Zmodem and CIS B+

Odyssey File Transfer
Uploads and Downloads
A common area of confusion with file transfer is the meaning of the terms Upload and Download. These
are standard jargon terms for, respectively, sending and receiving data. However, it is not always obvious
whose point of view is implied. For example, if upload means send, does that mean that you are sending
to the host, or that the host is sending to you?

In fact, the terms are always used from your point of view. An Upload will always mean sending from your
machine to a remote modem, and Download always means from the remote machine to your PC.

When you want to receive a file from a remote host, and the host offers upload and download menu
options or commands, you should remember that the host is using these terms from your point of view -
so you would select download to receive a file from the host, or upload to send a file to the host.

Odyssey File Transfer
What is a File Transfer Protocol?
According to the dictionary definition, a protocol is "the formal etiquette and procedure for state and
diplomatic ceremonies".

The use of that word in computing is an analogy drawn on the above definition. When two computer
systems wish to exchange information, they cannot simply blast data at each other, since the receiving
computer will have no idea what the data is, or what to do with it. Each must instead use a formal method
of communication which has previously been agreed by both sides - this agreed system of communication
is what we call a Protocol. Since the purpose of the communication we are interested in is the transfer of
a file, the complete jargon term is a File Transfer Protocol.

A file transfer protocol always has a few basic ground rules, such as the structure of a basic unit of
information - in jargon terms this unit is often called a Packet, although other names are sometimes used,
such as block or frame. Once a packet format has been agreed, a file transfer can be accomplished by
reading the file data, breaking it into packet sized chunks, and transmitting those packets to the remote
computer, which copies the data inside the packets to a newly created file. Most information packets sent
during a file transfer will normally contain file data, but more sophisticated protocols may also use packets
to pass other information about the file, such as what it is called, how large it is, the date and time it was
created, and so on.

Packets will normally include other information which helps the protocol to verify that information has
been received in the correct order, and has not been damaged by line noise. The protocol can protect
itself against line noise by adding a checksum to the data transmitted with the packet. A checksum is
simply an arithmetic sum of (at least) all the data bytes in the packet. When the receiving protocol has
reconstructed the packet it sums the data bytes again, and the answer it gets should match the one
received with the data; if the two results do not match then a message must be passed to the sending
protocol asking it to send the packet again.

A checksum is not the only method which can be used to verify data. More sophisticated protocols use a
similar mechanism called a CRC check. This check type is rather too complicated to describe fully here,
however we can summarise by saying that it involves forming all the data in a packet into one huge
number, dividing that by a constant, and transferring the remainder resulting from the division (the
remainder is the CRC).

This is all rather complex, but the important point to bear in mind about CRC checking is that it is usually
more reliable than a simple checksum, since it is quite within the bounds of possibility that an incorrect
packet could actually produce the correct data sum by accident. For example, suppose the data consists
of eight zero bytes - the sum is naturally zero. Now suppose that line noise caused one byte to be lost,
the sum is still zero, so a checksum would miss this error, whereas a properly implemented CRC check
would not.

Odyssey File Transfer
Why are there so many file transfer protocols?
Odyssey supports eight different file transfer protocols (including ASCII), a small fraction of the number it
could have had, so the question of why so many are needed is a natural one.

There are several answers to this question. On the one hand, there are many programmers out there who
fancy that they can design a better protocol than the next guy, some are even justified in that belief, and
so their creation becomes established on a popular bulletin board and spreads from there.

More importantly, new protocols arise as the comms market adapts to new requirements. The old
mainframe world had little use for file transfer protocols, since all the data was held on one central
computer. The people initially interested in file transfer were the early micro users, and so one of their
number invented the Xmodem protocol. The principle was quick and dirty, but it did its job. As the micro
world threatened to swamp them, the mainframe people in large academic institutions started to take
notice (better stamp some order on these infidels), and the need arose for protocols which could
exchange data between a variety of different PCs and the mainframe. Xmodem could not be used,
because Xmodem makes assumptions about the type of connection it has, and so the Kermit protocol
was born. Around the same time users were getting tired of the time Xmodem was taking to transfer large
files, especially over international satellite links - and so came the Ymodem protocols, followed by
Zmodem.

The Compuserve B+ protocol is something of a special case, since its development was not user led like
other protocols mentioned above, but was in fact developed by and for the Compuserve online service.
The B protocol has however developed along similar lines as other protocols.

It is not quite true to say that each protocol was better than the last. In many cases the choice of best
protocol depends on the application. For mainframe transfers Kermit is king. For high speed transfers on
international links Zmodem is the leader, and for simplicity and reliability Xmodem and Ymodem are hard
to beat.

You will find that not all services support all possible protocols, which is another reason that Odyssey
provides several, allowing you to choose which you prefer of those the service supports. You would be
wise when you join a new service to ask established users which is the best protocol to be used in your
situation.

Odyssey File Transfer
Which is the Best Protocol to use?
There is no protocol which is best in all circumstances. As mentioned in another topic, Xmodem is
attractive because so simple and hence reliable - a useful fallback if nothing else works. For transfers to
mainframes where control characters in the file are significant, Kermit is a good choice. Zmodem is
usually the best choice in most situations, assuming it is available.

Given the caveats mentioned above, here is a list of the file transfer protocols which Odyssey supports,
listed in decreasing order of desirability:-

Zmodem
Kermit *
Compuserve B+
Ymodem Batch
Ymodem
Xmodem
ASCII

Zmodem is the most desirable, because it is the fastest, and the most convenient to use. Kermit is
marked with an asterisk because its position in the league table depends very much on whether the host
Kermit supports a certain optional Kermit feature known as "Sliding Windows". This feature greatly
improves Kermit performance, which is otherwise abysmal. If the host Kermit does not support Sliding
Windows, then Kermit drops from second in the table to second last (in the relegation zone).

The different positions in the table mostly reflect the relative performance of each protocol, except that is
for ASCII. This one comes bottom not because it is slow (it is potentially the fastest of all), but because it
is not actually a protocol in any meaningful sense of the word. ASCII file transfer is simply the dumping of
text to the serial port, which no attempt at verification, and no way to handle binary data. ASCII is a
protocol of last resort only.

Odyssey File Transfer
PC to PC File Transfer
This section assumes that you wish to perform a PC to PC file transfer using a copy of Odyssey on both
computers. If one of the packages is not Odyssey then you will need to read the appropriate section of the
manual for the other package, and find a protocol supported by both Odyssey and the other package.
Most comms packages can be expected to support Xmodem at the very least.

Step 1 - Getting the hardware right.

To connect two computers together you will need a cable, and you must also identify the correct serial
port connector on each machine. If you are transferring between two PC compatibles then you will need a
correctly wired serial cable - see cabling requirements.

PC compatibles sometimes have a serial connector built in as standard, and sometimes a separate serial
adapter card must be plugged in an available slot. If your machine does not have a serial adapter
installed then you will need to purchase one before you can go any further. Do not mistake the PC printer
port for a serial port. The printer port is female 25-pin, whereas the serial port is a 25-pin male on an XT,
and usually is a 9-pin male on an AT - this means that in both cases the required connector on the cable
must be female. Note that a male connector has pins, while a female connector has holes into which the
pins of a male connector can fit.

Make sure that both ends of the cable are firmly inserted into their respective PC connectors. When
removing a cable from a PC you should always grip the connector shell - never pull on the cord, as this
could break the wires.

Step 2 - Setting the Communications Parameters.

You now need to decide what speed you will transfer data at. PC compatibles running Windows can
generally handle 9600 baud with no problems, and ATs can often manage 19,200 or even 38,400. If you
have not tried a direct file transfer before then you should set a slow speed to begin with (perhaps 2400
baud), once you have the basic file transfer procedure sorted out you can test reliability at higher speeds
later.

Having chosen a speed you should run Odyssey on both systems, and enter the Odyssey Setup|
Comms... dialog and set the baud rate to that speed on each. You should also set both computers for
eight data bits and no parity, and you should disable flow control for this first attempt (again, this is
something you can play with once the basic procedure has been established).

Remember also that if your PC has more than one serial port then you must make sure that Odyssey has
been configured to use the correct one (ie., the one your cable is attached to).

Click on OK in the setup dialogs to confirm any changes made, and activate the terminal window on both
machines.

Step 3 - Testing the Link.

You can test the link by typing a few characters on the keyboard of one machine. These characters
should appear on the terminal window of the second computer - they should not appear on the terminal
display of the one whose keyboard you are using. If this is so, then you should now do the same test on
the other machine, checking again that characters appear on the screen of the remote computer only.

If you do not see your characters being echoed, then there are several possible causes:-

· You did not select the correct serial port in Odyssey.
This can only happen if you have more than one, since Odyssey will not allow you to select a serial
port which does not exist in your hardware.

· Your baud rate is incorrect.
This can be easily checked in the Setup|Comms dialog, and should be corrected if different baud
rates are set on the two machines.

· Your cable is incorrect.
This is the most likely problem, and unhappily is the most difficult to fix. If you own a breakout box and
know how to use it, then you can sometimes diagnose the problem, otherwise you may need to seek
expert help. This is not a problem which we can diagnose over the telephone.

If something does appear on the other computer when you type, but it is not the characters you typed,
then you likely have a baud rate or parity problem, which is easily fixed - go back to step two.

Step 4 - Transfer the File (using Zmodem).

Since communications are established and tested, you may now transfer the file. Go to the computer
which has the file you want to send, and pull down the Upload menu.

Select the Zmodem file transfer option.

A dialog will appear, asking you to enter a file name, which you should now do. Zmodem allows multiple
files to be sent if the filename you enter contains wildcards (Kermit and Ymodem Batch allow this also,
but the other protocols do not).

Click OK in the filename dialog, and the file transfer window will appear on both systems, showing the
progress of the file transfer as it proceeds. An alarm will sound when the file transfer is completed.

When Odyssey receives a file, that file is stored in the Odyssey directory unless an alternative
has been named using the Directory for Downloads field of the Setup|General... dialog. Similarly with
uploads, if you do not specify a file path when you enter a filename, Odyssey will normally look for the file
in the Odyssey directory, unless an alternative has been named in the Setup|General... dialog field,
Directory for Uploads. Odyssey will not look in this directory if the entered filename includes a drive or
path.

Using other Protocols.

When transferring between two Odyssey packages, Zmodem is by far the simplest protocol to use.
However, if one side is not Odyssey, and does not support Zmodem then you may need to select another
protocol.

 You should not attempt to use the Compuserve B+ protocol to transfer files between two directly
connected PCs; this protocol is specifically designed to be controlled by a Compuserve host - Odyssey is
not a Compuserve host, and so the transfer will not work.

All protocols which Odyssey supports other than Zmodem require that you tell the receiving computer to
receive a file - unlike Zmodem, which will automatically enter receive mode when it detects an incoming
file header.

The following description assumes that Odyssey is used at both ends. However, it is likely that in actual
fact you will be using another package at one end (otherwise you would use Zmodem as above). You
should therefore translate these instructions for one end into those appropriate for the package you are
actually using.

On the sending computer, display the Upload menu, and select a protocol other than Zmodem. You will
be prompted for a filename, which you should answer, pressing <Enter> to complete the entry.
Remember that Ymodem Batch, Kermit and Zmodem allow wildcard filenames, the others do not.

On the receiving computer you should display the download menu, then select the same protocol as you
chose on the sending machine. If you choose ASCII, Xmodem or Ymodem you will be asked to enter a
filename for the received file. You are not asked this question if you select Ymodem Batch or Kermit,
since those protocols have the ability to exchange filenames during the transfer.

You will find that if you take too long to select the receiving protocol, and enter a filename for the received
file, then the sending computer may have timed out and aborted. A useful technique is to delay pressing
return on the filename prompts at each end until you are ready to go, ie :-

· Type the filename at the sending end, but do not press <Enter> to start the transfer.

· At the receiving computer, if the protocol required is Xmodem or Ymodem, type 'X' (or 'Y') and enter
the filename, but do not press return. For other protocols except Zmodem, display the download
menu, but do not select the protocol.

· On the sending computer, press the <Enter> key.

· On the receiving computer, press the <Enter> key (or, if not X or Ymodem, then press the key to
select the required protocol).

In other words, prepare each machine up to the point of the final <Enter> (or button click) which starts the
transfer, then press <Enter> on both machines. Performing the transfer in this way will ensure that the
sender never times out before you have time to start the receiver.

Odyssey File Transfer
File Transfer via Modem
Since you wish to perform a file transfer using your modem, it is assumed that you are connected to some
remote host. Unfortunately it is not possible to give exact details of what you should do next, since that
will depend on the host software used. The procedure can be described in general terms however.

We will assume that you have already established a session with the host concerned. These are some of
the things you will need to know about the host system :-

· Where to find files which are available for download.
· Which file transfer protocols are supported.
· How to select your preferred file transfer protocol.
· How to select the file you wish to download.
· How to tell the host that you wish to upload/download.

If you have the answers to these questions then continue as follows.

1. Enter the host "files" subsystem. Not all hosts divide themselves into subsystems, some may have
files available for download at any time.

2. Display the list of available files, and note the name of one you would like to download.

3. Tell the host that you wish to download a file.

4. Tell the host which protocol you require. This must be a protocol which both Odyssey and the host
support. Ideally this should be Zmodem, but if the host does not support Zmodem then you must
choose another protocol.

 Some hosts do not prompt you for a choice of protocol before each transfer. This could be either
because the host only supports one protocol, or else the the preferred protocol has been saved in a
permanent configuration "profile" for each user such as yourself. If this is the case you will need to find
out how to edit your profile if you would like to use a protocol other than the default. In any case, you will
need to find out what the default protocol is.

5. The host will now ask you which file you wish to download. You should answer this question by typing
in the file name you noted earlier.

6. The host will now tell you that it is about to start a file transfer, and will warn you to get your software
ready to receive. If you are using Zmodem or Compuserve B+ then you need take no further action,
since Odyssey will automatically detect the incoming file (provided this option is enabled in Setup|File
transfer...).

If you are not using Zmodem or Compuserve B+, then you should (as quickly as possible) :-
· Press ALT+D to display the Odyssey download menu.
· Select the required protocol (this must be the same protocol you chose on the remote host).
· If the protocol used is ASCII, Xmodem or Ymodem, then you will be asked for a filename for

the received file. You can enter any valid DOS name, but you would normally keep the name
the same as it was on the host. Other Odyssey protocols do not require you to enter a file
name.

7. The Odyssey File Transfer Status window will then appear, and the file transfer will start. The status
window will allow you to monitor the progress of the transfer as it proceeds.

These instructions are naturally a guide rather than a rule. Most host systems will work in this way,

although some may ask the questions in a different order. The procedure for uploading to the host is
much the same, except that you should of course choose the upload options on both the host and in
Odyssey. Unlike file downloads, Zmodem cannot automatically detect when you wish to upload, although
Compuserve B+ can! For Zmodem you must select the Upload menu and enter a filename as you would
for other protocols. Except for Compuserve B+, a filename is always required for uploads.

You may find uploads to be less reliable than downloads. The reason for this is that while the Odyssey
software can usually receive as fast as most current modems can throw data at it, this is not always when
sending to the modem or to the host. If you have a problem of this type then you will need to think about
enabling a flow control option.

Whether you choose XON/XOFF or RTS/CTS flow control depends very much on your combination of file
transfer protocol, modem, and host software. Of the protocols which Odyssey supports, only Zmodem,
Kermit and Compuserve B+ will work with XON/XOFF flow control, because the other protocols cannot
distinguish between an XOFF which is part of the file data, and an XOFF meant for flow control.

Hardware flow control (ie. RTS/CTS) will work with all protocols, however you should bear in mind that
this form of flow control applies only to the link between your modem and your PC. An instruction to your
modem to stop transmitting to you does not cause the remote computer to stop sending to your modem,
and data would almost certainly be data lost. RTS/CTS flow control is useful only when your modem is
communicating with the remote modem using a slower link than the one it is using to communicate with
your PC, for example when you use a speed buffered V.23 modem, a multi-speed modem, or a modem
with internal error correction and data compression.

If you are using Odyssey software MNP, then flow control problems should not arise, since MNP
automatically manages flow control.

Remember that when Odyssey receives (downloads) a file, it places that file in the Odyssey directory,
unless an alternative directory has been named using the Directory for Downloads option in the Setup|
General... dialog. Also, if the protocol being used requires that a receive filename is entered (ie. when you
use ASCII, Xmodem or Ymodem), and you enter a path drive or path as part of the filename, then
Odyssey will put the file where you have specified, and will not use the default directory.

Similarly, when you name a file for upload, and do not include a directory path, then Odyssey expects to
find that file in the current directory, unless an alternative directory has been named using the Setup|
General... Directory for Uploads field. If the file name you enter includes a drive or path then Odyssey
will not look in the default upload directory.

 Note that Odyssey does not automatically create a download directory if it does not already exist.
Therefore, if naming a destination directory for the received file using either method described above, you
must ensure that the directory exists, otherwise an immediate "File Creation Error" will occur as soon as
the download starts.

Odyssey File Transfer
Summary of Protocols
This section gives some technical details and a historical summary of the various file transfer protocols
which Odyssey supports.

ASCII
Xmodem
Ymodem and variants
Kermit
Zmodem
Compuserve B+

Odyssey Supported Protocols
ASCII
ASCII is the simplest of the protocols, and the most error prone. Although Odyssey offers ASCII in both
the Upload and Download menus, in download mode ASCII file transfer is just an alternative method of
turning on text logging (text capture).

There are options in the Setup|File transfer... dialog which control some aspects of ASCII file uploading.
These settings are the character and line delays, and the blank line expansion feature.

The character and line delays are used to reduce the effective transmission speed of an ASCII file. This is
needed because quite often the host has no specific file transfer capability, and you are in fact simply
pasting data into a host text editor. These have naturally been designed with human typing speeds in
mind, very much less than the 240 cps or so which can be expected of a typical modem. Sending
characters at these speeds would overload the host system, causing it to lose some of the data it has
been sent. The character delay introduces a pause between each character as it is being transmitted, and
the line delay inserts a separate pause at the end of each text line. Taken together, these delays can
reduce the effective speed of transmission to a level which the host can handle. You may however need
to experiment to find out what the proper delays should be. Remember when deciding this point that the
appropriate delay can depend very much on the time of day, ie. how busy the host happens to be at that
time.

The Blank Line Expansion feature solves a problem which arises with some BBS systems, and possibly
some mainframe hosts too. The problem is that these systems treat reception of a blank line as an
instruction to leave the editor (the one you are currently uploading lines to). This is bad news, since if the
blank line was actually not the last line in the file, then remaining lines are uploaded to the host after it has
left the editor, and may potentially wreak all sorts of havoc if they happen to contain valid host commands.
Enabling the blank line expansion feature tells Odyssey to replace each blank line in the file being
uploaded with a line containing a single space character. This is normally enough to satisfy the host that
you have not finished entering text.

Odyssey Supported Protocols
Xmodem
Xmodem is one of the oldest and simplest of file transfer protocols, designed by Ward Christensen in
1977 and placed in the public domain. It has gained in popularity over the years until now it would be a
hard task to find any BBS or comms package which does not support this protocol. The main reason for
the popularity of Xmodem is almost certainly its simplicity, a factor which makes it easy for programmers
to implement, and once implemented, it is generally more robust than other protocols.

Xmodem works by breaking the file to be transferring into packets each containing 128 bytes of data, and
transmitting these packets to the remote modem one at a time. After each packet is transmitted the
sender waits for it to be either accepted (ACKed) or rejected (NAKed) by the receiver, which determines
whether the sender next retransmits the previous packet, or sends the next one. If there is no more data
to transmit, then the sender transmits a single end-of-transmission (EOT) character, which tells the
receiver that the file transfer is complete.

Xmodem does have design drawbacks, mainly that it requires a completely transparent eight bit link (ie.
control characters, or bytes with the eighth bit set must not be intercepted by the medium), and that its
performance on timesharing systems, packet switching networks and satellite links can be extremely
poor; because of all that time Xmodem spends waiting for the ACK or NAK reply to a packet (a significant
wait on systems with long turnaround delays). However, under the right conditions, Xmodem generally
does its job very well.

Over the years, several important weaknesses of Xmodem have been highlighted. The simple checksum
method it uses to protect data integrity is not particularly effective, and the single character messages it
uses to acknowledge and reject packets, or mark an end of file makes it prone to being confused by line
noise, where these characters can occur accidentally.

The solution to the checksum problem was to design a variant of Xmodem which used a CRC check
instead. The problem of single character messages has not been dealt with, although certain tricks can be
used by the Xmodem implementation to try and make it less prone to spurious end of file characters; the
trick is to always NAK the first EOF seen, and if it was genuine the sender should respond by transmitting
it again.

Odyssey supports both Xmodem and the Xmodem-CRC variant, and also performs the EOF check for
improved robustness.

Odyssey Supported Protocols
Ymodem and Variants
Ymodem is a protocol designed by a programmer named Chuck Forsberg, although Ward Christensen
may have been responsible for coining the actual "Ymodem" term.

Ymodem is an attempt to improve upon the performance of standard Xmodem over slow networks. The
solution adopted by Ymodem is to use larger packets, 1024 bytes instead of the 128 byte packets of
Xmodem. This results in a Ymodem transfer requiring fewer packets for the same file, and hence fewer
waits for acknowledgment. However, the performance benefit derived from using this technique is not
exactly startling. One penalty associated with using a larger packet size is that if errors occur, more data
has to be retransmitted. On a noisy line, Ymodem performance can actually be worse than simple
Xmodem.

Although all Ymodem implementations use the 1024 byte packet size, the exact definition of this protocol
has always been a matter of confusion, despite the persistent efforts of Forsberg to get programmers to
implement the complete protocol before slapping the "Ymodem" label on it.

There are two main variants which are consistently called Ymodem. The first of these is simply Xmodem
with the few minor changes required to support the larger packet size, in fact Forsberg prefers to call this
version Xmodem-1k.

Note: The Odyssey Upload and Download menus continue to call the above protocol Ymodem,
since that is what it is likely to be called on most BBS systems. Odyssey refers to the other Ymodem
described below as "Batch Ymodem".

The other common Ymodem variant version is "True" or "Batch" Ymodem. This has a similar packet
structure to the simple variant, but adds several extras to make it a slightly more sophisticated protocol.
The first of these extras is that a file transfer may use any combination of Xmodem or Ymodem sized
packets, as appropriate. It sometimes makes sense to reduce packet size, for example when heavy line
noise is encountered (thus avoiding some of the performance penalties mentioned above), or when there
is less than 1024 bytes of data left to transmit. The other main feature of Batch Ymodem is implied by its
name, and that is the ability to send a "batch" of several files in a single session. It manages this by
sending an initial header packet before the file data, and this packet will contain details about the file such
as its name, size in bytes, and various other items of information which the receiver can use to construct
an exact duplicate of the received file on the local file system. After the first file has been sent, the
receiver waits for a new header packet, and if this packet contains another file name, then another file
transfer begins. If the header packet is blank, then the batch session is completed.

There is a final variant of Ymodem, called Ymodem-g. This protocol was designed for use on error
corrected links, such as can be provided by Odyssey using its internal MNP engine. This variant is almost
identical to Batch Ymodem, except that it never waits for acknowledgements. Instead it assumes that the
error controlled link will ensure that all packets are received correctly by the remote. Ymodem-g is an
example of a what is known as a streaming protocol, referring to the fact that it sends data in a continuous
stream without pauses. This can make Ymodem-g performance look quite impressive, but the lack of any
kind of error recovery or flow control capability makes this a risky protocol to use. The "g" option of the
Batch Ymodem protocol can only be negotiated by the receiver, however for reasons of symmetry
Odyssey offers this protocol in both the Upload and Download menus; however selecting Ymodem-g in
the upload menu is just another way of selecting Batch Ymodem - Ymodem-g will only be used if the
receiver requests it. To use Y-g with a remote host which doesn't explicitly offer a Y-g option you would
select Batch Ymodem on the host, Ymodem-g download in Odyssey, and Odyssey will determine for itself
whether the host actually supports this protocol or not. If it does not, then Odyssey will revert to a
standard Batch Ymodem file transfer.

Odyssey Supported Protocols
Kermit
Kermit is a protocol developed by Frank Da Cruz at the University of Columbia in New York, in 1981. It
has been developed almost continuously since then. In case you are wondering, yes, this protocol was
named in honour of the famous frog.

Unlike the other protocols supported in Odyssey, Kermit was never placed in the public domain. Instead
Da Cruz has retained all rights to the protocol with the intention of controlling future development, and
also ensuring that no one has to pay more than a nominal amount to use it. Commercial implementors are
allowed to include Kermit in a product such as a comms package, provided that the price charged is not
raised substantially because of it.

Kermit arose in an academic environment, in response to a need to exchange data between the central
computing facility, and a wide variety of mini and micro computers operated by students and staff. The
protocol therefore had to make minimal assumptions about the capabilities of the machine on which it
might run, or on the communications link which might be used; in fact Kermit is the only supported
protocol which is capable of operating both over networks which are not transparent to all control
characters, and on links which are parity checked (ie. in which it is only possible to send seven bits of
data per character).

Unlike other protocols, the main design consideration in Kermit was portability, rather than performance.
Even so however, Kermit performance can be very poor. For example, Kermit was originally designed to
assume minimal buffering of data on the part of the receiving computer, and so packets contain only 64
bytes of user data. The original Kermit was also a stop and wait protocol like Xmodem, and so where
Xmodem performance can be bad on slow networks, standard Kermit, having twice as many packets to
send, is far worse.

Over the years many improvements have been made to Kermit which greatly enhance performance,
however you should be aware that these are optional features which many Kermits do not implement, and
so you may still suffer worst case performance during a Kermit file transfer. There have been two main
improvements to Kermit which improve performance, namely larger packet sizes, and sliding windows.

Larger packets do for Kermit what Ymodem did for Xmodem, that is, reduce the number of packets
which need to be sent for any given file, hence reducing the time spent waiting for acknowledgments.

Sliding Windows Kermit (sometimes called SuperKermit), adds a feature called windowing to the
Kermit protocol. A windowed protocol is one which sends several packets before it must wait for an
acknowledgment, the "window" being the number of packets it can send. This is a big improvement on
protocols like Xmodem which must wait for an ACK for every packet. In fact a windowed protocol only
ever stops sending when it has N (its window size) outstanding packets, ie., not yet acknowledged.

All of this would simply be the equivalent of increasing the packet size were it not for one other feature,
which is that an acknowledgment (ACK) for an old packet can be received at any time, even while it is
currently sending a later one. If the sender is kept well "fed" with acknowledgements, then it may never
have N unacknowledged packets, in which case it never stops sending until the file transfer is complete.
This means that even on a slow satellite link, the data will arrive at the remote modem in a continuous
stream, with almost no pauses.

In a normal windowed protocol, if the receiver NAKs a packet, then the sender must retransmit the packet
in error, and all the packets which followed it which it had already sent. However, Kermit rather cleverly
implements a "sliding window" which means that it is only necessary to transmit the individual bad packet.
This feature makes all the difference for Kermit when used on slow networks, and makes it one of the
best performers around, second only to Zmodem, and probably better than Zmodem if you have a noisy
line.

Odyssey Kermit supports all of the Kermit options, including large packet sizes and sliding windows.

Odyssey Supported Protocols
Zmodem
Like Ymodem, Zmodem was designed by Chuck Forsberg and placed in the public domain. This was
actually a condition of Forsberg's contract with Telenet, for whom he developed the protocol. Zmodem is
probably the fastest of the protocols supported in Odyssey, as well as being the most sophisticated.

Zmodem, at least in the form implemented in Odyssey, is a streaming protocol, as was Ymodem-g. Like a
windowed protocol it is capable of sending a continuous sequence of packets without waiting for
acknowledgment, however unlike a windowed protocol it has no upper limit on the number of packets
which may be sent. Unlike Ymodem-g, Zmodem does have the means for error recovery and flow control;
the receiver can interrupt the Zmodem sender at any time to tell it to return to particular point in the
transfer, and flow control is managed using ordinary XON/XOFF software controls. These features make
Zmodem performance similar to that of Ymodem-g, but without the riskiness.

Odyssey supports two other features which make Zmodem especially desirable if you find that your host
BBS supports it, the two features being automatic downloading, and resumption of an interrupted file
transfer.

Auto-download means that Odyssey automatically recognises an incoming Zmodem file header at any
time, and jumps directly into its Zmodem receive routine when it does so. This means that on the host you
simply need to select Zmodem download, name the file(s) you wish to receive, and take your hands away.
Unlike other protocols you do not also need to tell Odyssey that a download is starting - the host will tell
Odyssey all it needs to know.

Resuming an Interrupted Transfer means exactly what it says. In other protocols if a file transfer is
interrupted (by a lost carrier perhaps), then you must redial the host BBS, get back into the file section,
then download the file again from the start. With Zmodem the difference is that the file transfer continues
from the point at which it was interrupted, potentially saving a great deal of time and expense.

Odyssey provides options in the Setup|File transfer... dialog which can be used to control some aspects
of Odyssey Zmodem file transfer. This setup section allows you to enable or disable Full Streaming - if
disabled, Zmodem will wait for an acknowledgment every now and then to avoid outrunning a slow
receiver, you can choose to Escape all control characters if the communications link is not entirely
transparent, and you can also disable the auto download feature if you want to retain manual control,
perhaps because you want to control file transfer from a script.

Odyssey Supported Protocols
Compuserve B+
The following is an extract from the Compuserve B+ protocol specification document by Russ Ranshaw.

The CompuServe B protocol was developed in 1981 to provide support for a special purpose Vidtex
terminal manufactured by the Tandy Corporation. It was the outgrowth of a proposed Bi-Sync oriented
protocol, but with a different packet structure and provision for more than even and odd packets. The file
transfer capability was added in 1982 to replace the CompuServe A protocol with a more robust protocol
which was in keeping with the over-all B Protocol design.

Some of the underlying assumptions made in designing the B Protocol were due to the capabilities of
personal computers which were available at the time. Such machines were generally limited in the
amount of available memory, 64 kilobytes being a large capacity. Other factors, such as the lack of a true
UART for data communications, resulted in the send/wait nature of the protocol where only a single
protocol packet at a time was sent.

The explosive growth of the Personal Computer industry has given us a plethora of machines, most of
which have far exceeded the early limitations of memory and communication ability. This growth has been
accompanied by a multitude of file transfer protocols, such as XMODEM, KERMIT, and ZMODEM.
CompuServe, realising the need for enhancement, has developed the B Plus Protocol to meet the
increasing demands being made upon its communication network and host computers, and to provide
added utility for its large family of users.

As the name implies, B Plus is an extension of the B Protocol. In particular, the B Plus enhancements
add:

· The ability to send multiple packets without waiting for individual acknowledgements (ie., windowing).
· Larger data packets (up to 1k at present).
· Optional use of modified XMODEM CRC-16 check method.
· Extensions to the standard control character quoting.
· Provision of a mechanism to exchange transport and application parameters.

Odyssey fully supports the B Plus protocol. Odyssey also provides some options in the Setup|File
transfer... dialog which can be used to control some aspects of B+ file transfer. This setup section allows
you to enable or disable windowing or packet send-ahead - if disabled, CIS B+ will wait for an
acknowledgment for every packet. You can choose to Escape all control characters if the
communications link is not entirely transparent, and you can also disable the auto transfer feature if you
want to retain manual control.

There is one nasty problem with the CIS B+ protocol which you should be aware of. B+ allows for
the host to automatically initiate a file transfer, just like Zmodem does. However, unlike Zmodem, the
Compuserve host triggers the terminal package using a single character (Zmodem uses a sequence of
ten characters or so for this). That is bad enough, as the character could be produced accidentally by line
noise; but to make matters worse, the chosen character is ENQ (ASCII 5), which is commonly transmitted
by many hosts or intermediate networks when they wish to receive an answerback message from the
terminal.

The upshot of all this is that, while it is completely safe to leave the Zmodem Auto-Download feature
enabled all the time, doing the same with CIS B+ would be very dangerous. Odyssey provides a Setup
menu option to enable and disable this feature, and we strongly recommend that you leave it disabled
until after you have made a connection to the Compuserve host (ie., until after you have logged on). This
is best handled in your autologon script for Compuserve. Look for a sample script in your Odyssey
directory called CISV32.SCR, which demonstrates a good way to do this.

Odyssey File Transfer
ASCII transfers with Zmodem and CIS B+
Both Zmodem and CIS B+ protocols support an ASCII transfer mode, in which the local machine may
perform any format changes required for the local system - for example, converting a LF-terminated Unix
file to CRLF for DOS. For both protocols this feature is completely ignored in Odyssey, and the file is
stored on disk, containing data exactly as the host sent it. This is done for good reason: both of the above
protocols have nice "resume-interrupted-transfer" features, and in both cases the feature is nearly
impossible to implement if the portion of the file on the local machine has been modified by a conversion
process and therefore has a different length or CRC than the same portion of the same file on the remote.
We consider the auto-resume feature more important than the convenience of automatic conversion, so
we leave that to external filter programs once you are sure that the file has been correctly received.

Odyssey Features
Terminal Emulation
Odyssey has the ability to emulate a variety of different terminal types. Choose one of the topics below for
further information.

What is a Terminal Emulation?
Which Emulation should you use?
How to select a Terminal type
Customising a Terminal Emulation
Summary of Odyssey Terminal Emulations

See also: The Viewdata (Prestel) terminal emulation.

Odyssey Terminal Emulation
What is a Terminal Emulation
The dictionary definition of terminal defines the word as meaning "of, being, or situated at an end,
terminus, or boundary". In the computing sense the terminal is the boundary between the human and the
machine. It is the point at which a human operator plugs into a computer system.

Traditionally, a terminal is a peripheral device attached to the computer by means of a communications
link, at which the operator can enter commands, or review data produced by programs.

In the early days of computing the terminal was a highly mechanical device which was a combination
printer and keyboard, called a teletype, and often abbreviated to TTY. Teletype is actually a trade name,
but as in many other situations, the trade name became a generic label for all such devices. The teletype
made a distinctive clattering sound when printing which was synonymous with computers (especially in
films and TV news programs) long after the device itself was obsolete. Most of the non-printing characters
in the ASCII set were originally designed with control of this device in mind, for example ASCII code
thirteen is the carriage return character, which moved the print head to the left margin, code ten is a
linefeed, which caused the paper roll to feed forward by one line, and so on. The teletype was hardly the
ideal output device - it was extremely limited in printing capabilities, it was slow, it was noisy, it kept
running out of paper, the ribbon would dry out or become tangled - and those were its good points!

As usual, technology came to the rescue. A revolutionary new terminal device was designed which
replaced the paper roll with a glass TV tube. This was totally silent (except for the sound of keys being
pressed), and had no paper roll or ink ribbon to cause problems. Also, since it was an electronic device, it
could accept and display computer output far faster than was possible with its mechanical forbears, and
instead of a print head, a symbol called a cursor was used to indicate where the "carriage" was at any
given moment. However, since this device was designed as a direct replacement for a teletype, it had no
extra capabilities, and was still controlled by ordinary ASCII codes. This led to the device being referred to
as a "glass teletype", and in later years as a "dumb terminal", when smarter terminals started to appear.

Eventually it was realised that there was no reason why this electronic terminal should be limited to the
same capabilities as a device which produced physical output on a paper roll. For example, there was no
reason why the carriage (cursor) could not be repositioned instantly to any point on the display, or why
text could not be overwritten or erased. The only problem was that the standard ASCII set did not include
any characters for advanced terminal control, so some extensions to ASCII would need to be developed.

It would have been nice if industry leaders had got their heads together and come up with an extended
terminal control standard, however this was still in the days where large computing corporations such as
IBM, Honeywell, Sperry, and DEC were almost the only players in the market, and they generally did their
best possible to tie customers into their proprietary hardware. The last thing these manufacturers wanted
was a standard which allowed a customer to buy equipment at competitive prices from any supplier they
chose. And so each manufacturer designed their own terminal control standards, many of which still exist
today in refined versions - the most common early terminal control standard still in use today is probably
the DEC VT52 code set. A recognised standard was in fact eventually developed by ANSI (an American
standards body), and DEC to their credit were among the first to adopt at least part of this standard in
their DEC VT100 family of terminals. These days most manufacturers are slowly doing the same,
although many include the ANSI control standard as an optional feature in their otherwise proprietary
devices. Most small BBS also use a subset of ANSI to provide attactive color user interfaces, that subset
is therefore called ANSI-BBS

In the eighties the micro revolution really arrived, and with it came an inconvenience. In many of the large
companies running a big central computer, a computer user would often find himself with both a
microcomputer to perform personal work, and a separate terminal to access the company mainframe.
This took up a great deal of desk space. It would be simpler if the user could get rid of the terminal and
use the micro for everything, and this was made possible through a technique called Terminal
Emulation.

A terminal emulator is a program which runs on your personal computer, and which can tie into the
communications link to a mainframe host, and which is capable of recognising and reacting to the
commands which the host computer sends in order to control what it thinks is an ordinary terminal. To
simulate a full terminal the emulation must translate keys typed on the PC keyboard into equivalent key
sequences understood by the host, as well as performing the correct display operation when a command
is received (such as a command to erase a portion of the display, or reposition the cursor). Sometimes
there are fundamental hardware differences between a PC and the terminal which make emulation
difficult, such as a different keyboard layout, or a different number of lines on the display, or specialised
text effects not available on the PC. However, given a little compromise, it is usually possible to emulate
almost any proprietary terminal on the PC, given the availability of appropriate emulation software.

Odyssey is a comms package which includes some terminal emulation capabilities, although by default it
emulates a simple dumb terminal (the good old TTY device). Odyssey supports emulations of several
different manufacturers' terminals, including VT320, VT100, VT52 and DG200. Also included is an ANSI
emulation, which implements that aforementioned subset of the ANSI terminal standard often used by
bulletin board systems. Odyssey also supports a special terminal emulation for use with the British
Telecom PRESTEL service, and similar Videotex hosts. Finally, there is a debug terminal (DBGTERM)
which is used when you want to know what characters that host is really sending to you.

Odyssey Terminal Emulation
Which emulation should you use?
The emulation you should use depends on what you want to use it for. If you are not using Odyssey for
anything except file transfer between two machines running Odyssey, then you do not need any particular
terminal emulation at all, and the default TTY setting is perfectly satisfactory. Likewise, if the service you
use produces output in a purely sequential, scrolling manner then no emulation is required and you
should leave Odyssey set to TTY emulation. Some users like to configure their comms package for ANSI
emulation as soon as they get it, simply because that was what they used to do on other packages.
Although this is normally quite harmless, it is rather a waste of memory and computer processing time,
since all those terminal features being emulated are not actually being used. It can also lead to strange
effects, for example when line noise accidentally coincides with a terminal control function, perhaps to
clear the display, or even change color!

If you are connecting the PC to a host computer, either by a direct serial cable, or by a telephone
connection, then you must first find out which emulation the host expects you to use. Sometimes the host
allows you to use any of several terminals, in which case you should just pick whichever makes life
easiest. Ask the host help desk if you are not sure.

Many of the smaller BBS hosts support ANSI terminals to give nice color menus etc. This would normally
be optional, and the BBS login sequence will ask whether you want to use ANSI or not. Remember that
before you say yes, you must have Odyssey configured to expect ANSI control sequences by selecting
that terminal emulation in the Setup|Terminal dialog (or by putting ANSI in the emulation field of the
dialing directory entry).

Odyssey Terminal Emulation
How to select a terminal type
There are several ways of telling Odyssey which terminal emulation the host requires. You can do it either
from the keyboard, from a script, or from the dialing directory.

If you want to make a particular terminal emulation a permanent default, then you open the Setup|
Terminal emulation dialog, and select the terminal type from the Terminal type listbox - remember to save
your changes if you don't want this selection to be lost when this Odyssey session ends. However, this
procedure is not always the best option, since in many cases it is not necessary for Odyssey to be
emulating a terminal except when it is actually online to a host.

The second (and easiest) method is to provide the name of a terminal emulation in the Terminal
Emulation field of the dialing directory entry for the relevant service. If you have read the description of
the dialer's calling procedure you will know that Odyssey automatically loads the emulation named there
when a successful connection is made with that service. This feature is especially useful with PRESTEL
emulation, since that emulation is rather inconvenient to use when communicating with the modem offline.

A third alternative is to control the loading of terminal emulations from a script using the
Emulate("name") command. To do this you will first need to become familiar with the Odyssey script
language.

Note that whatever method is used to load a terminal emulation, in all cases Odyssey must be able to find
the appropriate .TRM file for the emulation you select. These files contain the code for the emulation
itself, so that the main Odyssey program is not cluttered up with terminal emulation routines that are
never used. The INSTALL program places these files in your Odyssey directory automatically.

Odyssey Terminal Emulation
Customising a Terminal Emulation
In some situations you may wish to add a few extra features to an Odyssey terminal emulation. The most
common reasons are that you have an extended keyboard, and would like to have a more convenient
keyboard layout (Odyssey terminal emulations are normally designed so that they will work on the original
IBM PC keyboard), and another common reason is that you are communicating with a host mainframe
through a device called a protocol converter (a device which translates from one terminal emulation to
another), which often expect you to type strange keyboard sequences to obtain equivalents of special
function keys not found on the terminal being used.

In both cases the solution is to use the Odyssey Keyboard Mapping feature to design a new keyboard
definition. This utility is described in full elsewhere.

Once you have a new keyboard definition in the form of a .KEY file for Odyssey, you then need to load
that definition on top of the current terminal emulation. You can do that using the ALT+K command (or by
selecting that option from the terminal window Command menu), however an easier way is to have it
loaded automatically whenever Odyssey loads a particular terminal emulation.

Whenever Odyssey loads a terminal emulation, it looks to see if there is an attached keyboard template
with the same name. For example, if you load VT100 emulation, Odyssey looks for a file called
VT100.KEY, and will load this keyboard definition after the emulation, if it exists.

If you do not want to use the keyboard definition every time that emulation is used, then you can take care
of that by using File Manager to make a copy of the terminal emulation file, using a different name. For
example, you could make a copy of the VT100 emulation and call it VT-SPEC.TRM, then create a
keyboard template called VT-SPEC.KEY. Now, whenever you load the VT-SPEC emulation, the VT-SPEC
keyboard template will be loaded as well, but will not be loaded when you select ordinary VT100
emulation.

Odyssey has a field on the terminal window status line which it uses to tell you the type of terminal
currently being emulated. However, if you have loaded a keyboard definition on top of an emulation then
Odyssey will display the name of the keyboard template instead, in the case of the above example,
Odyssey would display "VT-SPEC" in that field. This allows you to tell, by glancing at the status line,
whether you are using the standard Odyssey terminal emulation or your customised version.

Odyssey Terminal Emulation
Summary of Odyssey Terminal Emulations
This section provides specific information on the various terminal emulations supported in Odyssey, as of
the time this manual was prepared. Note that the authors reserve the right to make changes to the
terminal emulations, or to add new emulations or withdraw old ones. We would only expect to do the latter
if we had replaced it with a new emulation which fully supported the original as a subset. In any case, you
will find details of any such changes in various .DOC files on the Odyssey distribution disk, which you can
view using the Odyssey message editor.

You may feel that some of the keystrokes required by one or more of these terminal emulations is rather
awkward. If so, please bear in mind that Odyssey cannot be designed only for users with the most
capable hardware. Most default key combinations for example are designed so that they can be used on
an original IBM PC keyboard. Remember that you can always redefine your keyboard as you prefer, using
the keyboard remapping facility.

The topics below provide information on specific terminal types supported by Odyssey :-

Teletype (TTY)
Digital Equipment Corporation (DEC) VT52
Digital Equipment Corporation (DEC) VT100
Digital Equipment Corporation (DEC) VT320
Data General Dasher 200 (DG200)
ANSI-BBS (ANSI)
Odyssey Debug Terminal (DBGTERM)
British Telecom PRESTEL (Viewdata)

See also: The Viewdata emulation in detail

Odyssey Terminal Types
Teletype (TTY)
This is the default terminal emulation in Odyssey, and the only emulation actually integrated into the main
Odyssey program. Use this "emulation" when no special emulation is actually required.

Note also that the Odyssey Command Line Recall feature only works when TTY emulation is being used.

Odyssey Terminal Types
DEC VT52
The Odyssey VT52 terminal type fully emulates the true DEC product. The keyboard produces standard
VT52 sequences for cursor and special function keys. VT52 emulation is also available in the Odyssey
VT100 emulation, since VT52 emulation is also a feature of a VT100 terminal.

Odyssey Terminal Types
DEC VT100
The Odyssey VT100 Emulation supports the features of the original VT100 terminal, as well as those of
the later VT102. The emulation however identifies itself to a host as an ordinary VT100, since some hosts
do not recognise the VT102 identity.

The IBM PC family has several models of keyboard, but none exactly match that of a VT100 (although AT
enhanced keyboards look quite similar). Certain compromises therefore have to be made in implementing
a VT100 emulation on IBM clones.

The numeric keypad on an IBM PC does double duty as a cursor pad. When NumLock is set the keypad
normally generates numbers, and if not set, the keypad generates cursor movement commands etc. This
feature is a hangover from the early IBM XT-style PCs, which did not have a separate cursor key cluster.

A VT100 terminal has a very similar looking keypad, except that on the VT100, the top four keys on the
keypad are function keys, named PF1, PF2, PF3 and PF4. Some DEC host software refers to PF1 as the
'gold key'.

In order to emulate the VT100, Windows Odyssey 'pretends' that the top four keys on your keypad are to
be interpreted as PF1, PF2 etc (though only if a VTxxx emulation is in use, and then only if the terminal
window is the active window). This naturally means that these keys cannot serve their normal purpose, ie.
you should note in particular that the NumLock function is not available when you are typing into the
VT100 terminal, and nor are the other keys in that row. In you press NumLock, it will cause the PF1
keyboard sequence to be transmitted to the host.

This layout does however create one minor problem, which is that a real VT100 terminal also has a '-' key
on the numeric keypad, a key which is sometimes used as a function key; yet it looks like we can't
generate that key code because we have just mapped it to PF4. To solve this problem Odyssey maps
ALT+<keypad '-'> as the VT100 <keypad '-'> key, which will generate either '-' or the appropriate function
key sequence, depending on the VT100 keypad mode set by the host.

Note that we could not have used the obvious looking mapping of PF1-->F1 etc, since a) this would block
access to the online help normally on the F1 key, and b) it would not be consistant with the more
sophisticated VTxxx emulations, which have the PFx keys and programmable Fx keys. Note also the
keyboard mapping described here applies to all the Odyssey VTxxx emulations, ie. VT52, VT100 and
VT320.

The Odyssey VT100 emulation does support 132 column mode, however Odyssey does not have fonts
thin enough to display this on one screen. Odyssey therefore implements "panning" which treats the
terminal window as a "sliding window" on which you can view a selected portion of the display. The
following keys control the portion of the 132 column region shown :-

Ctrl+Home Show Left Side
Ctrl+End Show Right Side
Ctrl+Left Arrow Pan 10 columns to the left.
Ctrl+Right Arrow Pan 10 columns to the right.

Odyssey Terminal Types
DEC VT320
This emulation can be thought of as a superset of the VT100 emulation described previously. All of the
VT100 notes regarding keyboard mapping and 132 column support also apply to the VT320 emulation.

This emulation does not support down-line loading of soft fonts, since the VT200/VT320 font size is not
usable on an IBM type display - we may add this in future for users who want to download soft fonts to
Odyssey with a VGA cell size; however, this would make the host application Odyssey specific, so it
probably isn't a good idea.

A VT320 terminal has the option of running in either "7 bit" or "8 bit" mode. When this emulation runs in "7
bit" mode it reports the terminal type on the Odyssey status line as "VT320-7b", and in "8 bit" mode it
reports "VT320-8b". The terminal always load itself in seven bit mode, and requires a host command to
switch to eight bit mode. Even then, Odyssey will switch to eight bit mode only if parity is set to "none"
and "Strip Parity Bit" (in Setup|Terminal) is disabled, at the time that the command is received.

As briefly mentioned above, the notes regarding keys in the VT100 emulation topic also apply to the
VT320 emulation. However, VT320 has a number of extra keys, in particular it provides up to 20
programmable function keys. For this reason we recommend that you use an enhanced keyboard (102
key) with the VT320 emulation, a keyboard which is as close as PC keyboards get to the DEC equivalent.

For convenience, applicable sections of the notes from the VT100 emulation are repeated here:-

The IBM PC family has several models of keyboard, but none exactly match that of a VT100 (although AT
enhanced keyboards look quite similar). Certain compromises therefore have to be made in implementing
a VT100 emulation on IBM clones.

The numeric keypad on an IBM PC does double duty as a cursor pad. When NumLock is set the keypad
normally generates numbers, and if not set, the keypad generates cursor movement commands etc. This
feature is a hangover from the early IBM XT-style PCs, which did not have a separate cursor key cluster.

A VT100 terminal has a very similar looking keypad, except that on the VT100, the top four keys on the
keypad are function keys, named PF1, PF2, PF3 and PF4. Some DEC host software refers to PF1 as the
'gold key'.

In order to emulate the VT100, Windows Odyssey 'pretends' that the top four keys on your keypad are to
be interpreted as PF1, PF2 etc (though only if a VTxxx emulation is in use, and then only if the terminal
window is the active window). This naturally means that these keys cannot serve their normal purpose, ie.
you should note in particular that the NumLock function is not available when you are typing into the
VT100 terminal, and nor are the other keys in that row. In you press NumLock, it will cause the PF1
keyboard sequence to be transmitted to the host.

This layout does however create one minor problem, which is that a real VT100 terminal also has a '-' key
on the numeric keypad, a key which is sometimes used as a function key; yet it looks like we can't
generate that key code because we have just mapped it to PF4. To solve this problem Odyssey maps
ALT+<keypad '-'> as the VT100 <keypad '-'> key, which will generate either '-' or the appropriate function
key sequence, depending on the VT100 keypad mode set by the host.

On the main keyboard, the backspace key on the PC generates BS (ASCII 8) and not DEL (ASCII 127)
which a VT100 user may expect. You can reverse this using the "BackSpace key sends..." option in
Setup|Terminal.

The Odyssey VT320 emulation does support 132 column mode, but the PC hardware is not capable of
displaying this on one screen. Odyssey therefore implements "panning" which treats the physical display
as a "window" on which you can view a selected portion of the 132 column display. The following keys

control the portion of the 132 column region shown:-

Ctrl-Home Show left side
Ctrl-End Show right side
Ctrl-Left Arrow Pan 10 columns to the left
Ctrl-Right Arrow Pan 10 columns to the right

A VT200/VT320 keyboard adds a separate arrow key cluster, a cluster of editing keys (Find/Insert etc),
and 20 function keys, the first five of which generate no keystrokes, but serve local terminal functions.

Arrow key cluster. This is almost identical to the PC enhanced keyboard equivalent.

Editing keys. An enhanced keyboard is far more convenient for this than the old PC keyboard. This is the
mapping of PC key to VT320 equivalent :-

PC key VT320 equiv

Insert Insert
Delete Remove
Home Find
End Select
Page Up Prev Screen
Page Down Next Screen

Note that although the appearance of the PC cluster is similar to the DEC equivalent, the keytops are
different. The emulation follows the PC keytops (where possible), rather than the VT320 keytops,
otherwise things could get rather confusing, however you should beware of help messages from the host
system (such as when using VMS EDT), which indicate the correct keys using a keyboard diagram.

Function keys. As noted above, the first five function keys serve local terminal functions both in Odyssey
and on a real VT320. This is convenient, since it means that Odyssey F1 (help) can still work. Other
keys :-

PC key VT320 equivalent.

F6 to F10 F6 to F10
Shift-F1 to Shift-F10 F11 to F20

Also, for convenience, VT320 key F15 (Help) is duplicated on PC key F11, and F16 (Do) is duplicated on
PC key F12.

Odyssey Terminal Types
Data General DG200
As with all PC terminal emulations, some compromise has to be made to account for the fact that what
you are using is a PC, and not in fact the terminal it is pretending to be. The DG200 emulation is no
exception.

Most compromises have to be made in the area of hardware requirements and keyboard differences.
Happily the DG200 hardware does nothing which the PC cannot cope with, but there are small problems
with the keyboard.

The major differences on a DG200 keyboard are that the latter has 15 function keys, whereas the
standard PC keyboard has ten. Odyssey also normally requires use of function key F1 (for help), however
this is set aside when DG200 emulation is in use, and another key is used to bring up help in terminal
mode ONLY (see below). The compromise used by Odyssey is to use the SCROLL LOCK key as a toggle
which decides whether the first five function keys are treated as PF1-PF5, or whether they should be
PF11-PF15. If the SCROLL LOCK key is NOT active then F1 to F5 correspond to PF1-PF5, and if
SCROLL LOCK is active then F1-F5 correspond to PF11-PF15. There is a similar mapping of these
function keys (controlled in the same way) when used in SHIFT and CTRL combinations. As a
convenience the DG200 keys PF11-PF15 can also be generated by typing ALT+F1 to ALT+F5, however
no control or shift combination can be used with this method.

Another difference that you should be aware of is that the DG200 has an ENTER key (generating a
linefeed - ASCII code 10) where most other keyboards have a key which generates a carriage return
(ASCII code 13). Odyssey follows the DG200 standard and will generate LF instead of CR for the PC
return key, however this introduces a problem in that you then cannot easily enter direct commands to a
Hayes type modem (the most common variety attached to PCs), because these commands need to be
terminated by a carriage return. You can get around this problem by typing Ctrl+Return when you want a
carriage return to be generated, and Return on its own to produce the DG standard linefeed character.

DG200 Key PC Keyboard

PF1 to PF10 F1 to F10 (with SCROLL LOCK off.
PF11 to PF15 F1 to F5 (with SCROLL LOCK on),

or ALT+F1 to ALT+F5.

The above keys, apart from ALT+Fx, may also be used in combination with the Shift and Ctrl. For
example Ctrl+Shift+F1 with SCROLL LOCK off will generate its DG200 equivalent, Ctrl+Shift+PF1. With
SCROLL LOCK on the DG200 equivalent is Ctrl+Shift+PF11.)

Enter Enter
Return Ctrl-Enter
Cursor Keys Cursor Keys
Home,End Same on PC
PgUp,PgDn
Delete Backspace (key above enter key).

Remember also that you cannot use F1 to enter the Odyssey help system from terminal mode while using
the DG200 emulation. Use Alt+= instead. This only applies to terminal mode. Terminal emulations do not
affect the use of the F1 key when you are in an editor, a menu, or the dialing directory etc.

Odyssey Terminal Types
ANSI-BBS
This is the ANSI emulation expected by some BBS hosts. When active the keyboard will produce
standard ANSI sequences.

Note that this emulation is designed to allow a host BBS to control the display of standard IBM
PC colors and expects the complete 256 code IBM character set to be available. To ensure that it is able
to do this, the ANSI emulation expects the Strip Parity option found in the Setup|Terminal dialog menu to
be disabled. The Dialing Directory editor automatically disables parity bit stripping if you select ANSI
emulation for a directory entry.

Odyssey Terminal Types
Debug Terminal
Some terminals offer a "debug monitor" or "display controls" mode, in which terminal control sequences
and ASCII control codes are displayed rather than being acted upon. Odyssey provides a separate
terminal emulation which does this. When loaded, this emulation will display standard ASCII abbreviations
for all control codes it receives. Since a carriage return is not acted upon in this emulation the cursor
always wraps when it reaches the right hand margin. Use this emulation if you need to know exactly what
characters are being sent by a host, including control characters which are not normally printable.

Odyssey Terminal Types
PRESTEL (Viewdata)
This is the terminal emulation required in order to use the British Telecom Prestel online database
system, and other systems which require Prestel compatible terminals. A Prestel terminal implements a
subset of the CEPT Viewdata terminal standard. The Odyssey PRESTEL emulation is a much revised
and totally integrated version of the Viewdata program by DORTEC DANMARK ApS. Since this emulation
forms a major subsystem in its own right, the much longer description of is it made available elsewhere -
see the Odyssey Prestel Emulation.

Prestel terminals have one feature which you may find confusing, which is that they do not communicate
using the standard ASCII character set used by everyone else. The character set used is largely similar,
but some characters have been moved around; for example, the '#' character occupies a position in the
Prestel character set occupied by '_' (underline) in the ASCII table. This is unfortunate, since '#' is one of
the most used keys in Prestel.

In most cases the character set issue is not a problem, because the Odyssey Prestel emulation performs
the necessary translation. Where it is a problem however is in keyboard macros, and Transmit()
commands from a script. The characters transmitted by these Odyssey features are not filtered by the
terminal emulation, and so are not translated. This means that if on Prestel you normally type a command
such as:-

*90#

in order to put this into a macro or transmit command you first have to replace the hash with an underline,
so the command as it appears in the macro is:-

*90_

if you do this then macros and transmit statements will be accepted as valid input by Prestel.

Odyssey Features
Text Logging
Text Logging (sometimes called Text Capture), means creating a permananent record of everything
received from the host computer which was displayed on the terminal. Odyssey provides several text
logging modes, these are:-

· Raw logging, in which Odyssey makes an exact record of every character received.
· ASCII logging, in which Odyssey attempts to produce a pure ASCII form of the output, removing any

control characters or terminal control sequences it finds.
· Printer logging, means directing the output of the logging function to a printer device attached to

your PC. This does not prevent logging to disk at the same time if you wish. Printer logging may also
be raw or ASCII mode.

Raw logging mode (whether for printer or disk) is controlled by an option available in the Setup|General
dialog. The same option controls both disk and printer logging. In each case, logging is automatically
suspended when a file transfer begins, and resumes again when it is completed. The following topics
provide additional detail on the use of text logging in Odyssey.

What is Text Logging?
Raw Logging
ASCII Logging
Printer Logging

Odyssey Text Logging
What is Text Logging?
Text Logging (sometimes called Text Capture), means creating a permananent record of everything
received from the host computer which was displayed on the terminal. In the old days of the teletype (see
the last chapter), text logging was an everyday feature, since the paper roll maintained a permanent
"audit trail" of all commands typed, and the output received, during every session on the computer.

When the days of the "glass teletype" arrived, text logging was no longer possible, since terminals no
longer provided a permanent storage medium.

However, with the arrival of terminal emulation on Personal Computers, this possibility has returned, since
these computers have access to both disk and printer storage, making it possible once again to create a
permanent recording of an online session for later review. Storage on disk of these logs is especially
useful, since it is possible for the text output to be searched for key words using an editor, or even to
massage it into a form which can be loaded into a word processor or spreadsheet.

Odyssey Text Logging
Raw Logging
Odyssey defaults to Raw Logging disabled, to enable it you must toggle the option in the Setup|General
dialog, or you can control the setting for individual services using the dialing directory.

When enabled, raw logging means that Odyssey will make no attempt at all to alter the data received
from the host computer. This allows you to record, for example, the exact sequence of characters
received by an Odyssey terminal emulation, a feature which allows you to play this data back later, using
Odyssey playback mode. If Odyssey had cleaned up some of the control characters, then the log would
contain nothing but printable ASCII characters, hence colors and so forth would not be visible when
played back.

Remember that if Raw Logging is enabled, then printer logging will also be "raw". This means that if the
data stream contains terminal control sequences, then unless your printer is rather specialised, these
control sequences are going to be very confusing to it (note that the Odyssey terminal emulations support
the printer redirection features of the terminal they emulate, so possibly providing a more useful form of
printer output).

There is a trick you can use if you want to get a raw log and a cleaned up printer log, and that is to use
online Raw logging to get a raw log file on disk. Once offline, you disable raw logging and use the
Odyssey playback feature to review your raw log offline. In playback mode Odyssey does everything it
normally would if it was receiving the data live, including text or printer logging! This means that you can
play back the raw log with raw logging disabled, and printer output enabled, which produces cleaned up
output on your printer.

Logging can be enabled in several ways. You can type ALT+L at the terminal window, and you will be
prompted for a file name for the log. Unless you supply an alternative, Odyssey will always give the log
file a .LOG extension. To close a log file simply press ALT+L again (ie. the command is a toggle). You can
also enable logging automatically for any service checking one of the buttons in the "Logging" panel in the
dialing directory entry for that service, you can also use another directory field to enter the name of the log
file you would like (do not put a .LOG or other extension in that name). Finally, you can enable logging by
using the LogFile() command from a script.

Odyssey Text Logging
ASCII Logging
ASCII logging is the opposite of Raw logging, in that Odyssey will attempt to produce pure ASCII text from
an incoming data stream, whatever terminal control sequences or other characters the input contains.
Colors and other text effects which cannot be represented as plain ASCII are lost.

However, you should be warned that cleanup is not always guaranteed to produce sensible results. A
highly animated terminal display, eg. one in which the cursor is moved around a lot, and portions of the
display are erased or overwritten, cannot be represented in a simple, "flat" ASCII form. For example,
suppose that the host produces a nice looking display - so far so good, we can capture an image of that
display for the ASCII log. Now suppose that the host positions the cursor and alters one character in that
display - how do we represent that change in the log file? Do we store another complete image of the
display? Suppose the host does that sort of thing a lot - how many copies of this virtually identical display
do we need to store, and how useful would the resulting (vast) log file be?

In summary, the less complex the host display manipulations are, the better the results of the cleanup will
be.

Odyssey Text Logging
Printer Logging
Printer logging directs output to a printer instead of to disk. This mode can be enabled from the file menu,
or by using the Printer() command in a script.

Note: In the DOS version of Odyssey, "printer logging" sent output directly to the printer in real
time. This habit does not translate well to the Windows environment, where such long term hogging of a
shared resource is quite unacceptable. So, Odyssey instead implements printer logging by first logging to
a file, and then automatically submitting that file to the print server when the "printer logging mode" is
closed. This of course means that you cannot view the printer log while it is open, which cannot be
helped. This makes the Windows version of Odyssey unsuitable for "alarm printer" type applications,
where the data stream to the log must be printed immediately.

Odyssey Features
Using Scripts
If you use Odyssey to perform a repetitive task, for example if you log on to the same BBS every day, and
download messages from the same section, entering the same commands, then what you really need is a
script. A script can be used to automate almost any interaction with the host. Scripts can range in
complexity from simple logon scripts, or complex "blink" scripts designed to search the BBS for messages
and download them as quickly as possible, in order to minimize connect charges. The following topics
provide more details on why scripts are used, how to write simple scripts, and how to use scripts. This
help section is aimed at non-programmers - see elsewhere for a detailed script language reference.

What do we need Scripts for?
Scripts execute in the background
Using Learn Mode to create Scripts
Creating your first Script by Hand
How to Run a Script
How to Stop a Script

Using Odyssey Scripts
What do we need Scripts for?
Even though you are a Windows™ user, you are very likely to have used DOS in the past, and so you are
probably familiar with the concept of "batch" files. These are text files, all with a .BAT extension so that
DOS will recognise them, and all containing a simple sort of program which the DOS command interpreter
can understand. DOS batch files consist mainly of ordinary DOS commands, although batch files can also
use programming features such as IF, GOTO and REM statements. The purpose of the batch file is to
make it easier for you to perform any repetitive task. Instead of entering individual commands to change
directories, load a mouse driver, run a word processor, and change back to the root directory when you
exit, you replaced all of the above with a single command which executes a batch file which does it all for
you.

A comms package needs a script language for similar reasons. Many of the things you do inside a comms
package are repetitive tasks which you perform (at least) daily. For example, you may log on to your
friendly local BBS to check for any electronic mail which has arrived. If any has, then you might want to
open a log file, capture the new messages, log off, and read the messages offline. If you use the same
service often enough, then it will almost certainly be worthwhile for you to prepare a script to automate
this procedure.

Using a script has at least these advantages :-

· Your hands are free for other work while the comms package gets on with its daily chore.
· Once a script is prepared it can be used by anyone, including those who have no knowledge of how

to perform the task manually.
· Time wasting typing mistakes are eliminated.
· The script responds to prompts and types messages much faster than a human possibly could, which

minimizes connect time.

However, there is one fly in the ointment, which is that a script can be badly affected by line noise. For
example, if a script is waiting for a particular prompt, and that prompt is corrupted by spurious characters,
then an indifferently written script could end up waiting all day for a prompt that has already passed by.

This is where error correction comes into its own. Whether you use the error correction provided by your
modem (if any), or whether you use Odyssey's software MNP, the important feature in common is that it
is no longer possible for a prompt to be corrupted by line noise, and so a breakdown such as the one
described above can never occur. Of course, this requires that the host BBS supports MNP, but these
days that is more and more likely to be the case. MNP cannot prevent a carrier loss, another potential
cause of script failure, but that eventuality is usually much easier to cope with than the problem of noise.
Error correction has made script programming reliable, and thus has turned it into an essential feature of
a modern communications package.

So, you are now sold on the merits of a script language, however the nature of the script language which
should be provided in a comms package is a matter for debate. Should we, the implementor of the
package, go for power or simplicity in the script language? On the one hand a limited script language is
usually easier for a beginner to learn, on the other hand our beginner will not be that forever, and sooner
or later will come to resent the limitations of a "simplified" script language.

In Odyssey, we decided to go for power, but in such a way that beginners can largely ignore the wide
range of features until the day comes when they are needed. A learn mode is provided which is capable
of creating scripts automatically, requiring negligible understanding of the underlying language. From
there you can progress to simple, manually created scripts using a basic set of four or five script
commands, and finally, when you are feeling confident, you have the option to learn the complete script
language.

Readers who are also programmers might like to know that Odyssey script closely resembles a

conventional programming language, especially structured languages like C, Modula-2 or Pascal. If you
have a familiarity with any of these, or with any other common language then you should find that you
have no problems at all in getting to grips with Odyssey script programming, and you will be able to
quickly progress to the expert level.

Using Odyssey Scripts
Scripts execute in the background
This topic is a brief note about how Odyssey executes a script.

In some packages, running a script takes over the comms package completely, blocking out everything
the user does at the keyboard, except for the "cancel script" key, which is usually an <Esc>. In Odyssey,
the script executes in "parallel" with the user, and so you are free to type Odyssey commands while a
script is running, and to "help a script along" if a mistake in the script or a burst of line noise causes it to
get stuck at a prompt. However, this is not true "background" operation, since entering any major
Odyssey subsystem (eg. pulling down a menu, or opening a dialog box), will cause the script to pause
until you return to terminal mode.

Using Odyssey Scripts
Using Learn Mode to create Scripts
Learn mode provides the easiest way for a beginner to create an Odyssey script. Typically this facility will
be used to create logon scripts for a variety of BBS host services. All you need to know when creating
such a script using learn mode is how to log on to that service manually. You teach Odyssey how to do it
once, and thereafter Odyssey will be able to do the job for you.

The first step in using Learn mode to create a logon script is to create a dialing directory entry for the new
service - see elsewhere for a description of how to do that.

When you create the dialing directory entry, you must put something in the "key" field. This key can be
anything you like, up to eight characters long, but it should be unique to that entry (ie. until you are more
experienced, you should make sure that the new key is not the same as that of any other entry). The
purpose of the key is twofold: first it allows a script created by learn mode to identify the correct directory
entry to use, secondly it allows a script to be attached to that entry so that the script is automatically
started when you select that entry for dialing. A script is "attached" to a dialing directory entry when the
script has the same name as the directory entry key.

For the sake of the following example, let us suppose that you want to create a script for dialing a BBS
host called "ANYBBS". First, you create the dialing directory entry, making sure that you have the right
settings for baud rate, parity, error correction and so forth. In the key field of the new entry you should
type the word "ANYBBS" (without the quote marks). Having completed the directory entry, including the
key, you then click on OK to leave the Edit Directory Entry dialog, and then click the Close button in the
dialing directory dialog, taking you back to the Odyssey terminal window (make sure that it is the terminal
window which is active after all of the above, and not any other Odyssey window).

Select the Command|Learn script... menu item. Odyssey will ask you for a name to give to the learned
script - for this example you should give the name "ANYBBS" (without the quotes). The name given must
match the directory entry key you entered earlier, so if you used a different key name, then you should
also use that alternative at the script name prompt. You should now click the OK button in the "script
name" dialog to start learn mode.

Learn mode is now active. From now on, everything you do will be noted by Odyssey, and duplicated in
the new script - so you should avoid doing anything which is unrelated to the task of logging on to the
service.

Press ALT+N to bring up the dialing directory dialog again, and double-click on the entry you created
earlier (this should still be highlighted if you exactly followed the instructions given above). This causes
Odyssey to begin dialing the number, so you should now wait to see if you get a connection.

On most host systems, the next thing you will see after a successful connection is the BBS logo, followed
by a prompt for your user name (the name the BBS knows you by). You should enter that now. The BBS
will then prompt you for a password, and again you should respond. You are now logged on to the BBS.

Odyssey now knows everything it needs to know in order to log on to that service, so assuming that is as
far as you want to take it, you should now leave Learn mode by pressing <Esc>. Odyssey will convert
what it has learned into a script file and write it to disk. If you have been following this example then the
script file created will be called "ANYBBS.SCR" - all Odyssey scripts have the .SCR extension, in the
same way that DOS batch files always have a .BAT extension (note that an Odyssey script created by
learn mode is a text file which can be viewed in any ASCII editor, such as the Odyssey text editor).

Learn mode is now terminated. Odyssey is no longer remembering what you do. You can if you wish stay
on the BBS to continue this session, or you may log off in order to test the newly created script.

The next time you want to call that service simply open the dialing directory dialog, and double click on

the directory entry. Odyssey will automatically run the learned script, which will not only dial the number
for you, but also enter your user name and password details, just as you did the first time, leaving you
logged on to the BBS and ready to read messages or transfer files.

There are other ways of running scripts in Odyssey, a subject which is discussed later on (see the section
"How to Run a Script").

If, during the learn procedure, something goes wrong with the login process, for example if you
get a busy signal, then you should abort learn mode by pressing the <Esc> key, then later on you should
start again from scratch. Whatever you do, you should not attempt to redial the number without first
stopping and restarting learn mode - if you ignore this warning you will have dialed the number twice,
which is exactly what the learned script will do when you run it!

Limitations of Learn Mode

For most systems, Odyssey learn mode will do a perfectly good job of automatically creating a login script
for you. However, some systems may cause problems if the timing of responses is very critical (strict
timing problems).

Strict timing problems occur when there is a minimum delay which must occur between a prompt and a
corresponding reply. Odyssey is not able to differentiate between the delay of a slow novice typist, and a
delay deliberately introduced by the typist because he/she knows that the system will not react correctly if
the response comes too quickly. The British Telecom PSS service is an example of a system in which you
must wait a second or two after a connection is established before you can start the login process. If the
delay inserted by Odyssey is too short then you may have to increase it, by manually editing the script.
For that you can use the built in Odyssey editor, or else use any preferred external editor, provided that it
is capable of writing a clean ASCII text file. Look for the "Delay(xx)" commands inserted into the script by
learn mode, and increase the number shown between the brackets (xx is a delay in seconds). Remember
to save your changes; if you use the Odyssey editor then the save key is F2.

Using Odyssey Scripts
Creating your first Script by Hand
For the slightly more adventurous, this section describes how to create scripts manually, using a minimal
understanding of the script language, but providing a little more flexibility than is possible with learn mode.
Reading this topic will also allow you to better understand scripts created by learn mode, should you need
to modify one.

A script is created with a text editor; probably the most convenient editor would be the one built into
Odyssey (accessed via File|Open...), however you are free to use any external text editor provided that it
writes clean ASCII text files. Use of the Odyssey text editor is described elsewhere; if you are not familiar
with it then you should read that section first, before delving into the script language. A script file must
have an extension of .SCR before it will be recognised by Odyssey, and furthermore it must have the
same name as a dialing directory entry key if the script is to be invoked automatically when that directory
entry is selected. You are not required to attach scripts in this way, since scripts can also be invoked from
the terminal mode Command menu, or named on the Odyssey command line. Remember to put the
script file in the correct directory, so that Odyssey can find it. This directory is the place where the main
program file WINODY.EXE was loaded from, or the alternative directory named in the Setup|General
configuration dialog. Storing the script anywhere else will make it rather awkward to use.

The Odyssey script language currently provides around 200 built in commands, yet it is quite possible to
write useful Odyssey scripts using only four or five of them. However, first you must learn rule number
one, which is that all Odyssey scripts start from the following minimum outline:-

SCRIPT myscript;
BEGIN

END;

This "skeleton" is what Odyssey expects from any script, and its purpose is to allow Odyssey to easily
confirm that this file it is trying to use is indeed a script, and helps it to more easily find where a sequence
of commands begin and end. The "myscript" name need not be literally as shown, in fact it can be almost
anything you like (its purpose is to give the script a meaningful name which will be understood by a
person reading a printed listing). However, you should perhaps leave it as shown until you become
familiar with the rules surrounding the naming of things in the Odyssey script language. Note the
semicolons after the "myscript" and after the "END" are required. The words "SCRIPT", "BEGIN" and
"END" are shown in upper case for clarity only. You can enter them in lower case if you prefer.

Once you have created the basic script skeleton as shown above, you may then enter commands
between the BEGIN and END lines. The basic four commands you will use are Dial, WaitFor, Transmit
and Delay.
These commands are described below.

Dial()

The Dial command is used to dial a number, taking the necessary details from a dialing directory entry. In
order to use the dial command you must pass it the name of a directory entry key, and that key must
match an existing directory entry, otherwise the dial command will not be able to proceed. Here is an
example of the dial command:-

Dial("ANYBBS");

Note that the key name is surrounded both by double quotes and round brackets, and that the command
is followed by a semicolon. This may seem like excessive punctuation, but once you get around to
learning the complete language you will find out why they are required. For the moment you should simply

follow the rules.

In the above example, the script would look up a dialing directory entry with a key of "ANYBBS", and
would dial that number. The script will resume from the statement following the Dial command once a
connection has been established.

WaitFor()

WaitFor is a basic command which you will use a lot, however expert you become. This command tells
the script to wait until a particular sequence of characters (called a "string") arrives from the host. Here is
an example of the waitfor command:-

WaitFor("User name?");

Note again the use of double quotes, round brackets and the terminating semicolon. In this example the
script will wait until the string "User name?" arrives from the host.

You can also, optionally, add a timeout to the WaitFor command. This would mean that instead of the
WaitFor command waiting forever for the string to arrive, it can terminate either when the string arrives, or
when the timeout period has elapsed. This is an example of the WaitFor command making use of a
timeout:-

WaitFor("User name?",10);

In the above example the WaitFor will terminate when the string "User name?" arrives from the modem,
or when a ten second period has passed.

Transmit()

The Transmit() command tells the script to transmit a string via the serial port. Here is an example of the
transmit command:-

Transmit("John Smith|");

In this example the script would transmit the characters inside the double quotes to the modem, and
hence to the host BBS. Note the '|' character which forms part of this string. This is treated as a special
character by the transmit command, in that it is not transmitted literally, but instead tells the transmit
command to send the code for newline (usually the carriage return character). This is required because if
you were typing this manually, in most cases the host would require you to press <Enter> to complete the
answer to the prompt.

Delay()

This is the last of the four basic commands. The purpose of this command is to insert a delay into the
script, usually to avoid sending messages to the host BBS before it is ready to receive them. This
command is given a number which is the delay you require, in seconds. Here is an example of the delay
command:-

Delay(2);

In the above example, the script would pause for two seconds, and would then proceed to the next
command.

Putting It All Together

Now that you know what the basic commands are, we can proceed to put them together in the form of a
script to log on to an imaginary BBS.

In the following example the script will dial a BBS which has an entry in your dialing directory with a key of
"ANYBBS". The script will then wait for the username prompt from the BBS and enter a name of John
Smith, then it will wait for the password prompt, and answer it with "smithy". In both cases it will follow the
characters in the reply with a carriage return code.

SCRIPT myscript;
BEGIN

Dial("ANYBBS");
WaitFor("User name? ");
Transmit("John Smith|");
WaitFor("Password? ");
Transmit("smithy|");

END;

Note the indentation of the lines containing the commands. This is not a requirement of the script
language, but in many people's opinion it does make the script look nicer, as well as making it a little
easier to follow. This is a good habit to get into early, since readability becomes very important once you
begin to write larger scripts using the advanced script features.

These four basic commands should enable you to write a login script for any service. However, such a
script does not deal with errors which might occur (such as an engaged tone). If that happens then you
should press the <Esc> key to abort the script. The next section contains information on how to have the
script recognise errors itself, however you needn't read that now unless you are feeling confident!

Dealing With Errors

Although the example script shown above will work perfectly in most cases, it does have a problem, in
that it makes no attempt at all to cater for those occasions when things do not work perfectly. For
example, suppose the number dialed is engaged - the script shown does not check whether the dial
attempt succeeded, so succeed or fail, the script will go on to execute the next statement. The next
statement is a WaitFor, and that is never going to succeed if the dial attempt failed, because Odyssey at
that time is not even connected to the host. We therefore need to put some error protection into the script,
which we can do using an IF statement.

An IF statement can be used to test whether a command succeeded. You cannot test the success of all
commands, because not all of them can fail. However, among the commands you can test are DIAL and
WAITFOR.

Here is the example script again, but this time we test the success of the DIAL command using an IF
statement. If the dial command is not successful then the script stops:-

SCRIPT myscript;
BEGIN

Write("Calling the ANYBBS BBS Host.|");
IF Dial("ANYBBS") THEN

WaitFor("User name? ");
Transmit("John Smith|");
WaitFor("Password? ");
Transmit("smithy|");

END;
END;

Note the extra END which has appeared. The IF statement always has an END associated with it in the
same way that a BEGIN always has an END, and it serves the same purpose, ie. to "bracket" a sequence
of commands. In the above example the sequence of commands between the "IF" line and the first "END"
will only be executed if the dial attempt succeeds. You could if you wished put other commands before the
"IF" line, or following the first "END" line, and these would not be dependent on the "IF" test. In other
words those commands would be executed whether or not the dial attempt succeeds. This is how you
control the execution of commands in the Odyssey script language.

The Write() command is an example of such a command which will always be executed when you run
this script (the Write command has not been previously discussed, it simply displays a message on the
terminal window, but does not transmit that message to the modem).

Finally, we would like to cope with the situation that occurs when you get a connection with a modem, but
the remote computer does not respond. To handle this, you can again use an IF statement, this time using
it to test the success of a WaitFor command. Since we now want the WaitFor to give up after a certain
period, we will specify a timeout this time - ten seconds in the following example:-

SCRIPT myscript;
BEGIN

Write("Calling the ANYBBS BBS Host.|");
IF Dial("ANYBBS") THEN

IF WaitFor("User name? ",10) THEN
Transmit("John Smith|");
WaitFor("Password? ");
Transmit("smithy|");

END;
END;

END;

Semicolons

We should perhaps return to the question of the placement of semicolons. In the first script example there
was a semicolon following the first use of WaitFor, yet there was no semicolon after the first WaitFor in the
most recent example shown. Also, there is no semicolon on either of the two "IF" lines. If you study the
above script you may be able to spot the common factor for yourself, which is that a semicolon tells the
script processor where a complete statement ends. Let us take the last script from top to bottom -
"SCRIPT myscript" is a complete statement, so it is followed by a semicolon. "BEGIN" is not a complete
statement, since it must have a matching end, so it is NOT followed by a semicolon. The "Write" line is a
complete statement, so there is a semicolon. The first "IF" line is NOT a complete statement, since like
the "BEGIN", it must have a matching "END" - and so on down the list. In the case of the first "WaitFor", it
is not a complete statement, since it forms part of an "IF condition THEN" sequence, whereas an
unconditional "WaitFor" is a complete statement, and so is followed by a semicolon.

The semicolon in the Odyssey script language serves more or less the same purpose as the full stop
which terminates a written sentence in the English language. The only real difference is that the script
language grammar allows any "sentence" to be constructed from any number of smaller sub-sentences,
each of which is also terminated with a semicolon.

Take all the time you need to understand this section of the manual. If all was not clear the first time you
read it then you are encouraged to read it again. When you have read and understood the above
discussion you will know everything you need to know in order to manually create your own login scripts
for any BBS, and have them cope with almost any eventuality.

Using Odyssey Scripts
How to Run a Script
Other sections of this user guide have already given information on how to run a script. However, for
reference, here are all the different methods gathered in one place. There are in fact many ways in which
execution of a script can be accomplished.

From the Terminal Command menu.

You can run a script from the terminal window Command menu. Press ALT+C while the Odyssey
terminal window is active, and the Command menu will be displayed. This menu lists the names of scripts
which Odyssey has found in its home directory (the directory where WINODY.EXE was loaded from). If
there are more scripts available than can be displayed in the menu (nine), then an extra menu option
called "More scripts", which if selected, displays a dialog containing a full list of all the available scripts.
To execute any script simply select it from the Command menu or the "more scripts" dialog.

From the Dialing Directory.

When you press <Enter> on a dialing directory entry in order to dial a BBS, Odyssey will check for an
"attached" script, and will load and run one automatically, if it finds that an attached script exists. Odyssey
considers a script to be attached to a dialing directory entry when the name of the script is identical to the
dialing directory entry key. For example, if the key field for the chosen entry is "ANYBBS", and a script file
exists called "ANYBBS.SCR", then Odyssey will load and run "ANYBBS.SCR" after dialing the number.
What happens from that moment is entirely up to the script, but in most cases it will proceed to log on to
the host service.

From another Script.

A script has the facility to chain to any other script. It does this by making use of the script Chain()
command. The script which used the chain command is halted, and the chained script (if found) is
executed. Odyssey has no facility to "call" another script, ie. with control returning to the original script,
however one possible approach if you need to do that would be to explicitly chain back to the parent script
from the child.

From the Command Line.

You can execute Odyssey scripts directly from the Odyssey program command line, by supplying the
name of the script as a command line argument to Odyssey in the Program Manager "Properties" dialog.
For example, the command line :-

C:\WINODY\WINODY.EXE ANYBBS

would tell Odyssey to execute the script "ANYBBS" immediately after loading. Odyssey does not display
its normal welcome banner when a script is named on the command line.

Using Odyssey Scripts
How to Stop a Script
Pressing the <Esc> key while a script is running will cancel the script, unless the script has used the
special CanEscape(FALSE) command to disable that feature. If you want to type and transmit an Esc
character while a script is running, without aborting the script, then a keyboard command has been
provided for that purpose - try ALT+F2.

Odyssey Features
Host mode
For active communications users, there sometimes arise certain occasions when you want to make a file
or files on your PC available to a caller. In order for the caller to be able to dial into your PC you must
operate as the host, just like the host systems you are used to calling, and it is in that situation that
Odyssey Host Mode is required.

What is Host Mode?
Preparing to use Host Mode
Host Mode in Use

Odyssey Host Mode
What is Host Mode?
If you are a typical comms user, you normally just use Odyssey as a terminal package. In other words,
you use a direct connection or a dialed link to talk to a remote host, from which you receive messages,
and also upload and download files.

For active communications users, occasions sometimes arise when you want to make a file or files on
your PC available to a caller. In order for the caller to be able to dial into your PC you must operate as the
host, just like the host systems you are used to calling, and that is when Odyssey Host Mode is required.

Odyssey host mode provides a very simple BBS-"like" facility on a PC equipped with an auto-answer
modem. Our host mode provides only the most basic of features, since it is not intended to be a full blown
BBS. You would typically use this feature if you want a caller to be able to upload or download a file
directly to your PC - the caller might often be yourself, calling the office PC from home to fetch a
spreadsheet file, or vice versa. Odyssey host mode is not like the "remote control" packages which are
now becoming popular - Odyssey host is designed so that the caller can use any package, not just
another copy of Odyssey.

Odyssey host mode can enable error correction, including the use of Odyssey's software MNP. So, if the
caller also has Odyssey, or an error correction equipped modem, then you can also have the benefit of
error free connections when running as a host. You will need to enable the "Error correction..." option in
the Setup|Host dialog if you want to use this feature.

By its very nature, a host mode is much more demanding of the modem connection than standard
terminal mode. For one thing, your modem must provide an auto-answer capability. You can check this in
your modem manual. Odyssey comes already configured to enable the auto-answer feature on Hayes
compatible modems when you act as the host, which is not to say that all Hayes modems support it. The
modem must also be configured so that it does not hold the carrier signal high. If it does, Odyssey will
never be able to recognise when a caller connects. If Odyssey displays a message "Call in Progress" as
soon as you enable host mode, then your modem has the carrier signal held high, and will need to be
reconfigured.

Host mode in Odyssey is handled by a script, which has the unusual name of ODYHOST.HSC, but which
is otherwise unremarkable. Source for this script is provided on the distribution disk (name as mentioned),
so you could in fact modify the current script to your own requirements, or even replace it entirely with a
more sophisticated script of your own design. The paragraphs in these help topics document the
operation of the standard script.

When you enter host mode, Odyssey sends the "Enable Auto-Answer" command string to the modem,
and then starts monitoring the DCD signal (DCD = Data Carrier Detected). This signal comes from your
modem, and tells the PC that a connection has been established with a remote modem. When Odyssey
sees this signal change, it knows that a call has started, and so it enters the interactive host mode.

The interactive host mode starts by asking the caller to enter a password. Odyssey knows two passwords
(configured in Setup|Host), and the password selected by the caller determines what type of access that
caller will have, ie. privileged or non-privileged.

Non-privileged callers are restricted to one directory only, and the only commands they can request allow
them to view the contents of that directory, upload or download a file, or log off.

Privileged callers have an extra "change directory" command, which gives a privileged caller almost
complete access to files on your machine. You should therefore be extremely careful about to whom you
allow privileged access. Do not feel that not providing this level of access to a friend is either mistrustful or
impolite - even the best of friends have accidents, and it is better that if he is going to accidentally delete
some files, that those files be on his own machine rather than yours! For most people, the only privileged

caller will be the owner of the PC in question.

Once the caller has entered a password, he is then free to upload and download files, plus use other
commands for which he has sufficient access privileges. When the caller is finished, he selects the
"Goodbye" command, and Odyssey drops the line. If necessary, Odyssey restores the modem to the
default baud rate, and is then ready to receive another call.

You leave host mode by pressing the Esc key, at which point Odyssey sends the "disable auto-answer"
command to the modem.

Odyssey Host Mode
Preparing to use Host Mode
Before you can use Odyssey host mode, you should be very careful about configuring your machine
correctly.

First, you should enter the Setup|Host dialog and study the options there. In particular, you should make
sure that you have changed the default passwords to something only you know, otherwise any Odyssey
user will know what those passwords are, and will be able to gain full access to your machine.

You may also change the welcome messages and so on, but this is not critical, especially if you are
experimenting with host mode for the first time.

The next thing to check is the current baud rate. This is shown on the Odyssey status line (but not when
in host mode). You should make sure that your baud rate is set to the highest speed your modem is
capable of, prior to entering host mode. The reason for this is that most modems will not allow a caller to
connect at a speed higher than the current baud rate between itself and the PC. So, if you had just
finished a call to a 1200 baud service, and then entered host mode without resetting the baud rate, then
your modem will only answer calls at 1200 bps or less, even though it might be capable of much more!
This is a feature of the modem, and not something that Odyssey can do much about.

Next, if you want to allow error correction for host mode callers, then you should remember to enable the
error correction checkbox in the Setup|Host dialog.

Finally, if you would like Odyssey Host mode to adapt the speed of the PC to modem link to match the
physical connection with the remote modem, then you should enable the "Baud Rate Detect" feature in
Setup|General. Note that not all modems like the terminal to switch baud rates after a connection is
established. Some modems do not allow it at all, while others may need to have a switch setting changed
before it is allowed.

Odyssey Host Mode
Host Mode in Use
This section describes how Odyssey Host mode appears to a caller.

The caller is first asked for a password, as mentioned previously. Assuming that he enters the Privileged
user password, he will then be presented with the following simple menu.

C)hange dir, F)iles, U)pload, D)ownload, G)oodbye?

Pressing the letter C invokes the change directory option. The user is asked for a directory name, and
when one is entered, Odyssey makes that directory the current "host" directory. This command is
available only to privileged callers.

The Files command, selected by pressing the F key, causes Odyssey host to prompt for a file mask. The
mask is a standard DOS file specification, and allows wildcards. When the specification has been entered
Odyssey host will list all the matching files.

The Upload and Download commands allow file transfer. Odyssey will prompt for the name of the file to
be transferred, and the protocol to use. Remember that in this case, the host mode is using the Upload
and Download terms from the point of view of the caller, not the Odyssey host.

Finally, the Goodbye command is selected by pressing the G key, and this causes Odyssey host to say
goodbye to the caller, and then hang up the phone.

When host mode is in use, a user watching the host PC can see everything that happens. Also, the
review editor can be used to view previous transactions which have scrolled up the top of the display, and
text logging can be used to keep a permanent record. You will need to leave host mode before you can
view the review buffer or log file however. Host mode is terminated by pressing the <Esc> key on the
keyboard of the host computer.

Odyssey Features
Chat mode
Chat mode is enabled by an option on the terminal mode Window menu.

Chat mode is a real time mode which allows you to "talk" directly to another modem user via the
keyboard, much as you would talk to that person on the telephone (except chat mode is slower, and more
expensive). Chat mode is of genuine use in two situations, firstly, when the host software allows, it
provides the means to chat directly with another caller to a multi-user BBS system. Secondly, it is
sometimes useful when a caller calls your PC directly, and you want to exchange a few brief words prior
to, or just after transferring a file.

When Chat mode is entered the terminal window is split into two panels, called the "Local" and "Remote"
panels.

The Remote (top) panel is where any received characters from the remote modem are displayed. These
will normally be characters typed by the other party, but may also include echoes of text which you have
typed.

The Local (lower) panel is used to display anything that you type on the local keyboard.

Press the <Esc> key to leave chat mode.

Odyssey Features
Playback mode
A "Play back log file" option may be found on the terminal mode Command menu. This allows you to
"play back" offline, text which has been previously logged online. This is most useful for playing back data
intended to drive one of the Odyssey terminal emulations such as Prestel or ANSI, but if you do so it is
important that these logs should have been created using Raw Logging Mode.

Odyssey knows nothing of which terminal emulation is required to play back a log correctly - you must
select the correct emulation yourself before playing it back.

When playing back a log file, Odyssey emulates the baud rate currently selected in Setup|Comms, so you
can speed up or slow down the playback by changing the baud rate accordingly.

To pause a playback simply press the space key (in fact, any key other than <Esc> will have this effect).
To cancel the playback you should press the <Esc> key.

When in playback mode Odyssey treats all the characters it displays as if it had just received them from
the serial port. This means for example that you can enable text logging or look in the review buffer. If
Raw Logging is disabled when you play back a raw log file, then the effect is to clean up the log file
producing a clean ASCII equivalent. For this to work you must not give the ASCII log file the same name
as the raw log file, otherwise the result will be one badly mangled file, and probable deployment of the
DOS CHKDSK utility.

Odyssey Features
Command line recall
Odyssey implements a command line recall (or "command history") feature, a la the DOSKEY utility in
DOS 5, or the popular public domain DOSEDIT. Currently, the command line recall facility is a feature of
Odyssey's internal TTY terminal emulation, so the feature will not be available if you aren't using TTY.
Use the Up-Arrow key to recall a previous command, and then use the normal text editing keys to modify
it, if necessary, before pressing <Enter> to retransmit the command.

Note that once you enter the recall facility you have entered a mode, during which characters arriving
from the serial port will be ignored. It is obviously not healthy for this to last too long, so if there is no
keyboard activity for 20 seconds, Odyssey will automatically exit from the command recall/edit mode and
return to normal terminal operations.

There is no fixed limit on the number of commands in the command history. Instead, a 1k buffer is
allocated to the task, the limit being reached when that buffer is full. After that, one or more of the oldest
commands will be discarded each time a new one is added.

Odyssey Features
Event Logging
Some other packages call this feature Call Logging, but that is a misnomer, since the feature is not only
used for keeping a record of calls. To enable event logging you should turn on the Event logging option
of the Setup|General dialog. There is also a script command called EventLogging() which can enable
and disable this feature.

In the current implementation, Odyssey logs the start and end of a call, plus the completion or failure of a
file transfer (all of the above with the appropriate statistics, naturally). Also, a script can record its own
events using a general purpose LogEvent() command.

All events are logged to a file called ODYSSEY.REC (RECord). Currently, no substitute file can be used.

Odyssey Features
Keyboard Mapping
Note: This feature was provided as an external utility - MAKEKEY - in the DOS version of Odyssey. In
Windows Odyssey the keyboard template compiler is built directly into the main application, since
Windows Odyssey doesn't have the memory constraints of DOS Odyssey.

Odyssey provides an internal facility which is used to create keyboard templates, ie. a table which maps
keys (or key combinations) onto replacement keys or keyboard sequences. The replacement keys may
be either function keys (so you can perhaps tell Odyssey to treat F8 the same as PageUp), or the
replacement might consist solely of ASCII characters, which will then be transmitted to the remote host. In
short, a keyboard template allows you to configure Odyssey such that any key combination can be
substituted with a user defined string of characters.

Odyssey accepts as input a text file with the extension .KDF, which describes the keyboard mapping, and
it outputs a file with the extension .KEY, which you can use elsewhere within Odyssey, perhaps by
loading them explicity at the terminal window Command menu, or load them from a script by invoking the
LoadKeyDef() script command.

Keyboard definitions are also loaded automatically if its name matches the name of a terminal emulation
being loaded, that is, if you load a terminal emulation called XYZ.TRM, and a keyboard definition file
exists called XYZ.KEY then the keyboard file will also be loaded. This allows you to produce your own
variants of the standard terminal emulations for use with special hardware, eg. protocol converters. You
would normally copy the standard emulation to a new name, eg. VT100.TRM to VT_TSO.TRM, and
prepare a keyboard definition called VT_TSO.KEY. Doing it this way ensures that the keyboard definition
is not loaded when you the VT100 emulation to behave like the standard terminal.

The format of the keyboard definition source file is very simple, it is just a text file with one definition per
line. The source file may also contain blank lines, and lines starting with a semicolon ';' are ignored, so
such lines may be used for comments.

Below are some sample definitions:-

<CtrlF1> = <Esc>[0~
<CtrlF2> = <Esc>[1~
<CtrlF3> = <Esc>[2~
<CtrlF4> = <Esc>[3~
<ShiftF1> = <AltS>E
<AltShiftE> = XYZ123

Each line contains the key combination to be defined, an equals sign, and then the definition itself, which
is made up of one or more key symbols (a letter or a key combination). There should be at least once
space either side of the '=' character.

A key combination starts with '<' and ends with '>'. In between should be a key name optionally prefixed
by 'Ctrl', 'Alt' or 'Shift', or any combination of those. There are some valid key definitions:-

<ShiftTab>
<AltShiftTab>
<ShiftAltTab>
<ShiftCtrlTab>
<<>

Key combinations can contain the "shift keys", ie. 'Alt', 'Shift' and 'Ctrl' in any order, but the
combination must end with a key name (the shift keys are not sufficient on their own).

Table 1 lists the function key names recognised by the Odyssey keyboard template compiler.

Note in particular that enhanced keyboard function keys (Home etc) are mapped separately from the old
equivalents on the numeric keypad. This allows you to assign different replacement keystrokes to each.
Once you have prepared your source definition file you then run the keyboard template compiler, eg:-

Make sure that the Odyssey terminal window is the active window, then pull down the Command|
Compile... menu option. The file selector dialog that follows will by default assume that you want to
compile a script, and will therefore show you any available .SRC files in the current directory - ignore that
and instead pull down the "Show files of type..." listbox, and select the ".KDF (Keyboard definition files)"
entry. Now you see a list of KDF files, if you created any. Select the one you would like to compile (eg.
mydef.KDF). Provided that there are no errors in the kdf definition then Odyssey will create a file called
mydef.KEY. If there were any errors then Odyssey will open up a text editing window, and will use the text
cursor to point to the error location - watch the status line, as this will contain a description of the problem
Odyssey is complaining about.

Another way to compile a keyboard definition file is to load that file into an Odyssey editor, then press F9.

Note that Odyssey's key substitution is not nested, ie. a definition such as:-

<Esc> = <Esc>

does nothing, it does not produce an infinite loop. In other words keystrokes described on the right hand
side of the '=' are the actual keys generated by typing the key combination on the left - none of the
keystrokes on the right are expanded. To further clarify this, here is another example:-

<F1> = ABC
<F2> = <F1>

In the above example, pressing <F1> generates the string "ABC", but pressing <F2> generates <F1>,
and not "ABC", despite the prior definition.

Table 1: Recognised Function Key Names

These are the standard function keys:

F1 F2 F3 F4 F5
F6 F7 F8 F9 F10
Esc Tab BS UpArr DownArr
LeftArr RightArr
Ins Home PgUp Del End
PgDn Enter

The following keys are all generated on the keypad when NUMLOCK is in effect. Since the Odyssey
keyboard template compiler distinguishes these keys it is possible to have '7' on the keypad generate a
different sequence from '7' on the main keyboard.

K0 K1 K2 K3 K4
K5 K6 K7 K8 K9
KDot KMinus KPlus

The following keys are only useful if you have an Enhanced Keyboard, they include three further keypad
keys (KSlash, KStar and KEnter).

F11 F12 ELeftArr
EHome EEnd EUpArr EDownArr
EPgUp EPgDn ERightArr
KSlash KStar KEnter EDel EIns

You should also be aware that the keyboard template compiler makes no attempt to verify that a
key combination you define can actually be generated by your keyboard or BIOS. For example, the
keyboard on the machine used to prepare this manual does not generate a keystroke when
CTRL+ALT+F1 is pressed, but Odyssey will not prevent me from using this combination in a definition, eg
:-

<CtrlAltF1> = XYZ

Odyssey Features
Script Compiler
Odyssey always compiles a script before running it, ie. Ody checks that the syntax is correct, and then
converts it into a encoded form which can be executed more efficiently. This fact isn't necessarily obvious
to the user however, since Odyssey normally performs this task quickly and transparently, each and every
time the user asks Odyssey to load an .SCR file.

The Odyssey script compiler is fast, but not infinitely so. In other words there will always be a certain
pause for the compile step during script loading, which for most scripts will be so brief that users will
never notice it. However, with very large scripts this pause might begin to be noticeable, and perhaps
irritating. In that case, you might like to take advantage of the fact that Odyssey scripts may optionally be
stored on disk in a precompiled form, which gets rid of the compilation overhead while retaining the
execution speed advantages of using a compiled rather than interpreted script language.

As briefly mentioned above, compiling involves converting the script into an encoded form; for some users
this fact might be the main reason for wanting to store scripts in precompiled form. For example, technical
support personnel might want to distribute Odyssey scripts to users within their company in this encoded
precompiled form in order to prevent those users from fiddling with the script, and possibly breaking it.

You can create precompiled scripts in a number of ways, which are detailed below.

Preparing the script.

The first step is of course, write your script! However, instead of saving the script source file with the usual
.SCR extension, you should save it with a .SRC extension instead (SRC is short for SOURCE).

If the script is already written then you can simply rename it with an .SRC extension; there are no syntax
differences between normal and precompiled scripts.

Compile the script

There are two ways to compile a script from within Odyssey. The first is to select the Command|Compile...
option from the terminal window menu, and then enter the name of the .SRC file you want to compile.
Odyssey will compile the selected script and store the resulting .SCR file in the same directory, unless the
source contained syntax errors, in which case Odyssey will display an error message and give you the
opportunity to correct the error.

Alternatively, if the script source is loaded into a text editor window then you can compile the script by
pressing the F9 key, or by selecting the Command|Compile... option from the text editor menu. Again,
an .SCR file will be written if the script is successfully compiled, or a syntax error will be highlighted if not.

Once the encoded .SCR file is created it can be used just like a normal .SCR file, except of course that
you should not attempt to edit it, since the precompiled form of a script is not a text file.

Compiling a Script from DOS

You may also compile an Odyssey script from the DOS command line. This feature is provided for those
old fashioned programming types who prefer command line versions of compilers and other similar tools.
Seriously however, an external DOS version of the script compiler is of course necessary if you, for
example, want to automate compilation of a number of scripts using a DOS batch file.

The external, DOS version of the script compiler may be found in the Odyssey directory as the utility

called ODYCOMP.EXE. To compile any script simply run OdyComp, giving the name of the .SRC file to
be compiled on the command line. For example :-

C:\path> odycomp myscript.src
Will compile "myscript.src", generating a file "myscript.scr" in the same directory.

Odyssey Features
Alternative Configurations
The DOS version of Odyssey had a feature whereby it was possible to launch Odyssey from different
subdirectories, each such subdirectory containing a different ODYSSEY.CFG file. This allowed users to
have (eg.) different configurations for talking to different modems. A similar, though not identical feature is
available in Windows Odyssey.

It is anticipated that most users of Windows 3.x will launch Odyssey by clicking on an icon, selected from
a Program Manager group. Program Manager does not offer any explicit "current directory" with which to
associate alternative configurations, but an equivalent is possible through the use of multiple icons, each
of which would have different options in the command line parameters section.

To force Odyssey to use an alternate config file, you need to add an option "-S<filename>" to the
Odyssey command line set in the "File|Properties..." dialog in Windows "Program Manager". For
example :-

 c:\winody\odyssey.exe -sMYCONFIG.CFG

forces Odyssey to load and save its configuration data to MYCONFIG.CFG instead of the standard
ODYSSEY.CFG. Note that this alternate name applies for the entire Odyssey session; there is no
command provided which allows you to change config files in mid session.

Note that there should be no space between the '-s' and the filename. The filename can specify a
complete path, or it can consist of just the tail part, in which case the config file will be stored in the
Odyssey directory - in which case (of course) the tail name should not conflict with the standard name of
ODYSSEY.CFG.

If you also specify a script on the Odyssey command line this may come either before or after the config
file option, eg :-

 c:\winody\odyssey.exe -sMYCONFIG.CFG myscript

 c:\winody\odyssey.exe myscript -sMYCONFIG.CFG

both of these examples do the same thing, ie. load setup information from MYCONFIG.CFG, and then run
the script 'myscript.scr'.

Odyssey Help
Odyssey Menus
Each of the MDI document windows in Odyssey has its own private menu bar. Please select the menu
whose help topics you would like to view.

Terminal Window Menus
Text Editor Menus
Directory Viewer Menus
Bitmap Viewer Menus
Fax Server Menus
Archive Viewer Menus

Odyssey Menus
Terminal Window
These are the menus available when the terminal window is active.

File menu
Edit menu
Setup menu
Upload/Download menus
Command menu
Window menu
Help menu

Odyssey Menus
Terminal Window File Menu
It is conventional for all Windows applications to have a File menu, and for that menu to be the first item
on the main menu bar. The File menu is used when loading and saving documents, printing, and other
operations which concern access to files or directories.

File|Open...
File|Close all
File|Save
File|Save as...
File|Print screen
File|Text logging...
File|Printer logging
File|View directory...
File|DOS Shell
File|eXit from Odyssey...

Odyssey Menus
File|Open...
The terminal window File|Open... menu item is used to load a text file into an Odyssey text editor. The
user is presented with a standard File Selector dialog from which to make his choice of files, and a text
editor window is then opened to display and edit that file. The filename entered into the dialog need not
already exist - if the file does not exist then a new file of that name is created.

Odyssey Menus
File|Close all
The File|Close all menu option closes all currently open document windows (directory viewers and
bitmap viewers, text edit windows etc). This is quicker than closing each window individually.

Odyssey Menus
File|Save
The File|Save menu item is not relevant to the terminal window, and is therefore disabled.

Odyssey Menus
File|Save as
The File|Save as menu item is not relevant to the terminal window, and is therefore disabled.

Odyssey Menus
File|Print screen
The File|Print screen menu option converts the current contents of the terminal window into a bitmap,
and then submits that bitmap for printing by the Windows print server.

The Setup|Printer configuration dialog contains an option called "Convert screen dumps to
monochrome". If this option is checked then Odyssey will attempt to reduce the colors in the bitmap to
black and white only. If the option is not checked then a color bitmap is passed to the printer driver, which
will normally print the bitmap using gray halftones (unless a color printer is used).

Odyssey Menus
File|Text logging...
The File|Text logging... menu option is used to start or stop Odysseys text logging (alias: text capture)
feature. The option is a toggle, ie. if text logging was inactive, then selecting this menu option will turn on
text logging. If text logging was in progress then selecting this menu option closes the log file and ends
the text logging mode. You can use ALT+L as a shortcut for this command.

If text logging is about to begin (it was not already in progress), then Odyssey displays a standard file
selector dialog, which prompts the user to enter a name for the new log file. If the user enters the name of
a log file which alreadys exists then text will be appended to that log file, otherwise a new log file is
created.

Odyssey Menus
File|Printer logging
The File|Printer logging... menu option is used to start or stop Odysseys print logging feature, whereby
text displayed on the terminal is also copied to the printer. The option is a toggle, ie. if printer logging was
inactive, then selecting this menu option will turn on printer logging. If logging was in progress then
selecting this menu option ends the printer logging mode.

Odyssey displays a "Printer Logging" icon on its desktop whenever printer logging is active. Another way
for the user to close a printer log is to click on this icon and then select "Close" from the system menu
which the icon displays.

Odyssey does not physically print the data in the "printer log" until printer logging mode is closed,
since it is not acceptable for Windows applications to "own" such shared resources for extended periods.
It is therefore not possible to use Odyssey for printer streaming applications where it is important for the
data to be printed immediately.

Odyssey Menus
File|View directory...
The File|View directory... menu item causes Odyssey to open a directory viewer window, which allows
the user to copy, rename and delete files etc. See elsewhere for a detailed description of the Odyssey
Directory Viewer module.

Odyssey Menus
File|DOS Shell
When the File|DOS Shell menu item is used, Odyssey asks Windows to run a copy of the DOS
command interpreter. This can be useful for users who want to quickly manipulate a few files before
returning to Odyssey. The keystroke ALT+O can be used as a shortcut for this menu item.

Implementation note: Several beta testers commented about the presence of this feature - is it
needed? Why wouldn't the user just switch to File Manager or somesuch, if he wanted to manipulate
files?

All we can say in reply is that your humble author has found it quite useful for quickly nipping into DOS to
create or zap a directory. Compare "ALT+O,md mydir,exit" with the standard equivalent of ALT-Tabbing to
switch to Program Manager, open the "main" program group, run File Manager, change the view to the
correct partition, File|Create directory..., close file manager, ALT-Tab back to Odyssey... However, If you
are really desparate to do it the long winded way then the presence of the above menu item certainly
shouldn't hinder you!

Odyssey Menus
File|eXit from Odyssey...
Selecting this menu item tells Odyssey to shut itself down. The ALT+X keystroke can be used as a
shortcut for this menu item, as can clicking on the "Exit Odyssey" toolbar button. However, Odyssey asks
for confirmation if you use a shortcut method.

If there are any "modified" text editor windows opened then Odyssey will ask if you wish to save those
files.

Odyssey Menus
Edit menu
It is conventional for all Windows applications to have an Edit menu, and for that menu to be the second
item on the menu bar, immediately after the File menu. The Edit menu normally deals with clipboard
operations, plus specialised application functions which deal with examining or editing the current
document.

Edit|Review buffer
Edit|Cut
Edit|Copy
Edit|Paste

Odyssey Menus
Edit|Review buffer
Selecting the Edit|Review buffer menu item causes Odyssey to open its special "Review Buffer" text
editor window. The Review Buffer is used to display the most recent 32000 characters which was
displayed in the terminal window. You may use the ALT+R keystroke as a shortcut for this menu item.

Odyssey Menus
Edit|Cut
This menu item is expected to appear in the Edit menu of a Windows application, however a "Cut to
clipboard" function is not application to Odysseys terminal or directory view windows, and this menu item
is therefore disabled.

Odyssey Menus
Edit|Copy
This menu item is expected to appear in the Edit menu of a Windows application, however a "Copy to
clipboard" function is not application to Odysseys terminal or directory view windows, and this menu item
is therefore disabled.

If you wish to copy text from an online session to the Windows clipboard then you should do so by
opening the Review editor (see Edit|Review buffer), and then copying the text from there.

Odyssey Menus
Edit|Paste
This menu item is expected to appear in the Edit menu of a Windows application, however a "Paste from
clipboard" function is not application to Odysseys terminal or directory view windows, and this menu item
is therefore disabled.

Odyssey Menus
Setup menu
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to.

Setup|Communications...
Setup|Modem...
Setup|General...
Setup|Editor...
Setup|File transfer...
Setup|Terminal emulation...
Setup|Fax...
Setup|Host mode...
Setup|Keyboard macros...
Setup|Printer...
Setup|Save settings

Odyssey Menus
Setup|Communications...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Communications menu item leads to the Setup|Communications dialog which controls the serial
port settings which Odyssey uses - baud rate, parity etc.

Odyssey Menus
Setup|Modem...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Modem... menu item leads to the Setup|Modem dialog, which can be used to change the
command strings which Odyssey sends to the modem for initialization and dialing.

Odyssey Menus
Setup|General...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|General... menu item leads to the Setup|General dialog, which affects miscellaneous features in
Odyssey, such as the storage directory for downloaded files, and so on.

Odyssey Menus
Setup|Editor...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Editor... menu item leads to the Setup|Editor dialog, which is used to control the default settings
for an Odyssey text editor window (for example, the default settings control whether a text editor window
will have the "word wrap" feature enabled when it opens).

See also: The Odyssey Text Editor

Odyssey Menus
Setup|File transfer...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|File transfer... menu item leads to the Setup|File transfer dialog, which can be used to control
optional features of the ASCII, Zmodem, and Compuserve B+ protocols.

See also: File Transfer in Odyssey

Odyssey Menus
Setup|Terminal Emulation...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Terminal emulation... menu item leads to the Setup|Terminal emulation dialog, which allows you
to control terminal features such as the terminal type to emulate, local echo and so on.

See also: Terminal Emulation in Odyssey

Odyssey Menus
Setup|Fax...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Fax... menu item leads to the Setup|Fax dialog, which stores variables involved in FAX transfer,
such as the directory for FAX files, your local FAX station ID etc.

See also: The Odyssey FAX Server

Odyssey Menus
Setup|Host mode...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Host mode... menu item leads to the Setup|Host mode dialog, which can be used to edit control
variables used by host mode, such as the default directory for callers, the normal and privileged user
passwords, etc.

See also: Odyssey Host Mode

Odyssey Menus
Setup|Keyboard macros...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Keyboard macros menu item leads to the Setup|Macros dialog, which allows you to assign
commonly used host commands to an ALT+<digit> keystroke.

Odyssey Menus
Setup|Printer...
The Setup menu is one of the most important features in Odyssey. It is via this menu that you reach all
the important configuration dialogs, which is how you make Odyssey work the way you want it to. The
Setup|Printer... menu item leads to the Setup|Printer dialog, which allows you to control Odyssey use of
the printer, by selecting the printer to use. This dialog also gives access to the common "Print setup"
dialog provided by the Windows printer driver.

Odyssey Menus
Setup|Save setup
When any of the setup options have been changed then you can save your changes to disk using this
menu item. The configuration data is saved to a private binary file called "ODYSSEY.CFG" which is read
automatically, the next time you run Odyssey.

Odyssey saves other configuration information between sessions, such as the size and position of the
terminal window.

Odyssey Menus
Upload/Download menus
The Upload and Download menus are used to initiate a file transfer in Odyssey. When you want to
upload a file, you select a protocol from the Upload menu. Likewise when you want to download a file,
you choose the protocol from the download menu.

Upload/Download|ASCII
Upload/Download|Xmodem...
Upload/Download|Ymodem (Xmodem 1K)...
Upload/Download|Batch Ymodem...
Upload/Download|Kermit...
Upload/Download|Zmodem...
Upload/Download|Ymodem-G...
Upload/Download|Compuserve B+...

The Zmodem and Compuserve B+ protocols support an auto-download feature whereby the
appropriate Odyssey receive protocol is triggered automatically by the host. If this feature is enabled then
you should not try to start the download manually from the Download menu, as this will only cause
confusion. Compuserve B+ can also trigger an upload automatically. These protocols appear in the above
menus only because the features mentioned can be disabled in Setup|File transfer, and in that case you
would need to start the transfer manually.

Odyssey Menus
Upload/Download|ASCII
When Upload|ASCII is selected, Odyssey displays a standard File Selector dialog, which prompts the
user to supply the name of the ASCII file which is to be uploaded - a wildcard name is not accepted. Note
that since ASCII upload is a not a protocol in the true sense of the word (and hence has no provision for
error checking), Odyssey uses character and line delays to avoid sending characters too fast for the host
to process. The length of these delays can be configured by you using the Setup|File transfer dialog.

The Download|ASCII menu item is provided solely to preserve symmetry between upload and download
menus. Selecting this menu item is just another way of opening a text logging (text capture) mode.

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Xmodem...
When Upload|Xmodem... or Download|Xmodem... is selected, Odyssey displays a standard File
Selector dialog, which prompts the user to supply the name of the text or binary file which is to be
uploaded or downloaded - Xmodem is not a batch protocol, so a wildcard name is not accepted.

Note that you should respond to the file selector dialog as quickly as possible, since the remote end is
waiting to start the file transfer, and may time out and abort if you take too long.

Xmodem will not work if the serial connection has parity checking enabled.

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Ymodem...
When Upload|Ymodem... or Download|Ymodem... is selected, Odyssey displays a standard File
Selector dialog, which prompts the user to supply the name of the text or binary file which is to be
uploaded or downloaded - Ymodem is not a batch protocol, so a wildcard name is not accepted.

Note that you should respond to the file selector dialog as quickly as possible, since the remote end is
waiting to start the file transfer, and may time out and abort if you take too long.

Ymodem will not work if the serial connection has parity checking enabled.

The Ymodem protocol is sometimes called Xmodem-1K

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Batch Ymodem...
When Upload|Batch Ymodem... is selected, Odyssey displays a standard File Selector dialog, which
prompts the user to supply the name of the text or binary file which is to be uploaded - as the name
implies, Ymodem Batch is a batch protocol, so a wildcard name will be accepted (click on "OK all
matching" in the file selector dialog). Note that you should respond to the file selector dialog as quickly as
possible, since the remote end is waiting to start the file transfer, and may time out and abort if you take
too long.

When Download|Batch Ymodem is selected Odyssey does not prompt for a file name, since that
information will be supplied by the remote end of the protocol.

Ymodem batch will not work if the serial connection has parity checking enabled.

The Ymodem Batch protocol is sometimes called True Ymodem

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Kermit...
When Upload|Kermit... is selected, Odyssey displays a standard File Selector dialog, which prompts the
user to supply the name of the text or binary file which is to be uploaded. Kermit is a batch protocol, so a
wildcard name will be accepted (click on "OK all matching" in the file selector dialog). Note that you
should respond to the file selector dialog as quickly as possible, since the remote end is waiting to start
the Kermit file transfer, and may time out and abort if you take too long.

When Download|Kermit is selected Odyssey does not prompt for a file name, since that information will
be supplied by the remote end of the protocol.

Kermit is the only file transfer protocol supported by Odyssey which will work normally when the
serial connection has parity checking enabled. However, you should still avoid using parity if you possibly
can, since parity checking will make the file transfer take at least 20% longer to complete.

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Zmodem...
When Upload|Zmodem... is selected, Odyssey displays a standard File Selector dialog, which prompts
the user to supply the name of the text or binary file which is to be uploaded. Zmodem is a batch protocol,
so a wildcard name will be accepted (click on "OK all matching" in the file selector dialog). Note that you
should respond to the file selector dialog as quickly as possible, since the remote end is waiting to start
the Zmodem transfer, and may time out and abort if you take too long.

When Download|Zmodem is selected Odyssey does not prompt for a file name, since that information
will be supplied by the remote end of the protocol. If you have "Auto-Download" enabled in the Zmodem
panel of the Setup|File Transfer dialog then you do not need to select this menu option at all - the host will
automatically trigger Odyssey into Zmodem receive mode.

Zmodem will not work if the serial connection has parity checking enabled.

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Ymodem-G...
When Upload|Ymodem-G... is selected, Odyssey displays a standard File Selector dialog, which
prompts the user to supply the name of the text or binary file which is to be uploaded. Ymodem-g is a
batch protocol, so a wildcard name will be accepted (click on "OK all matching" in the file selector dialog).
Note that you should respond to the file selector dialog as quickly as possible, since the remote end is
waiting to start the file transfer, and may time out and abort if you take too long. In fact, Ymodem-G is
identical to Ymodem Batch when uploading, since only the receiving side can request that the "G" variant
of Ymodem be used.

When Download|Ymodem-G is selected Odyssey does not prompt for a file name, since that information
will be supplied by the remote end of the protocol.

Ymodem-G will not work if the serial connection has parity checking enabled.

See also: File Transfer in Odyssey

Odyssey Menus
Upload/Download|Compuserve B+...
When Upload|Compuserve B+... is selected, Odyssey displays a standard File Selector dialog, which
prompts the user to supply the name of the text or binary file which is to be uploaded. Compuserve B+ is
a batch protocol, so a wildcard name will be accepted (click on "OK all matching" in the file selector
dialog). Note that you should respond to the file selector dialog as quickly as possible, since the remote
end is waiting to start the Compuserve B+ transfer, and may time out and abort if you take too long.

When Download|Compuserve B+ is selected Odyssey does not prompt for a file name, since that
information will be supplied by the remote end of the protocol.

Compuserve B+ will not work if the serial connection has parity checking enabled. Also, note that
Compuserve B+ supports "auto-start" for both downloads and uploads. You would normally enable the
relevant options in the Setup|File transfer dialog after logging on to Compuserve, and so you should
never actually have to use these menu commands. In fact, CIS B+ timing is rather awkward, and you may
find it quite hard to get the transfer started manually.

See also: File Transfer in Odyssey

Odyssey Menus
Terminal Window Command menu
Each of the Odyssey MDI document windows offers a Command menu, which (as the name implies)
activates command functions particular to the type of window currently active. In the case of the Terminal
Window, these commands mostly relate to controlling an online session by issuing commands to the
modem, starting and compiling scripts and so on.

Command|Send break
Command|Hang up
Command|Dial...
Command|Dial again...
Command|Clear terminal screen
Command|Play back log file...
Command|Load keyboard template...
Command|Re-initialize modem
Command|Learn script...
Command|Compile script...
Command|1/2/3...9
Command|More scripts...

Odyssey Menus
Command|Send break
This menu option causes Odyssey to assert a break signal on the modem interface for roughly half a
second. Some remote hosts require this signal to tell them that a particular terminal requires attention, for
example because you wish to log on. A short-cut for this command is provided, use ALT+B when the
terminal window is active.

Odyssey Menus
Command|Hang up
This menu command causes Odyssey to instruct the modem to hang up the phone. It is more normal for
the remote system to terminate the call itself, after you type the "bye" command or some equivalent. A
short-cut for this command is provided; use ALT+H whenever the terminal window is active.

Odyssey Menus
Command|Dial...
This command invokes the Odyssey dialing directory feature, your main starting point when dialing any
number. The dialing directory feature is described in detail elsewhere. A short-cut for this command is
provided, press ALT+N when the terminal window is active.

Odyssey Menus
Command|Dial again...
The dialing directory can be used to create a dial queue with one or more entries. When Odyssey fails to
make a connection using the numbers in this queue the queue itself is left intact. Likewise if Odyssey
succeeds in making a connection a single entry is removed from the queue, which otherwise remains
intact. To continue dialing the remaining numbers in that queue, ie. without generating a new queue, you
choose this menu option.

As an example of when this command might be used: suppose you call the same five bulletin boards
every day. Each of those BBS has a dialing directory entry, which are left tagged at all times. When you
first run Odyssey you select "Dial Tagged", which causes an initial dial queue to be created, and Odyssey
connects to the first number. When that call is completed you select this menu option and Odyssey
connects to the second number, and so on until you have visited each BBS.

Odyssey Menus
Command|Clear terminal screen
This command causes the terminal screen to be cleared. Review buffers etc. are unaffected. A short-cut
alternative is provided for this menu option - type ALT+T when the terminal window is active.

Odyssey Menus
Command|Play back log file...
This facility allows you to play back a log file of data received from a remote system. The log is played
back at the speed currently set up as your baud rate in Setup|Comms. Playback mode can be used as an
offline reader or as a means of testing terminal emulations.

It is important that log files played back are recorded using Odyssey Raw Logging mode, otherwise
Odyssey may have filtered out some control characters, and the playback will be inaccurate.

Playback has two modes - "single step" and "normal". In single step mode the playback stops every time
Odyssey sees a control character, whereas in normal mode the playback is continuous. Playback mode is
initially single-step, but can be switched to continuous by pressing space at the first pause.

See also: Text Logging

Odyssey Menus
Command|Load keyboard template...
A keyboard definition file allows you to redefine the meaning of any of the keys on your keyboard. You
must prepare the file using the Keyboard Remapping facility, and the resulting .KEY file can then be
loaded using this menu option or from a script.

Additionally, a keyboard definition file is loaded when you change terminal emulations, provided that the
keyboard file is given a name matching the terminal emulation, eg. VT100.KEY. When a new keyboard
definition is loaded any previous definitions are discarded, ie., Odyssey does not accumulate definitions
from multiple keyboard files.

Odyssey Menus
Command|Re-initialize modem
This command causes Odyssey to transmit the configured init string to the modem. This contents of this
init string is set using the "Init String" option of the Setup|Modem dialog, and is normally transmitted when
Odyssey starts up. There is no need to retransmit the init string in a session unless you specifically want
to restore the modem to its startup settings.

A shortcut for this command is provided - press ALT+J when the terminal window is active.

Odyssey Menus
Command|Learn script...
This menu item allows the non-programmer to create the scripts which will automate the process of
logging on to a remote host. With a modem correctly connected to the computer and phone line, select
Learn script... from the Command menu, then enter a file name for the script as prompted. From this
point manually call up the remote system, using the normal procedure for that system. While you do so
Odyssey is keeping a complete record of what the remote system was sending, and how you responded
to it. Once the remote system that was called is online and all passwords etc. have been entered, you
press the <Esc> key to end Learn mode. The recording of the call will be converted into a script and
saved under the name you gave. Next time you call the same system you should look under the
Command menu for the script which was created. From then on the process of logging on to that
particular host will be automatic.

A more detailed discussion of using Learn mode is given in the Using Scripts section of this user guide.

Odyssey Menus
Command|Compile...
You are likely to use this menu command mostly to compile script sources, but it is also used when
compiling keyboard templates. This discussion will concentrate on how you compiling scripts - for a
discussion of compiling keyboard templates, see the description of the Keyboard Remapping feature.

Compiling Scripts.

It is not always obvious, but Odyssey always compiles scripts internally into a private pseudo-machine
code before running them. This has many advantages including the ability to spot syntax errors before
you go online and also because the script executes faster, with less overhead.

This is feature best appreciated by Odyssey users who are also programmers. If you do not
understand what this utility does, then you can safely assume that you do not need it.

If you have been writing large scripts then you will probably have noticed the long pause after you load a
script before it begins executing - this is when Odyssey is compiling the script. You can get rid of these
delays by saving them in a pre-compiled format, as follows:

Rename the script source file name.SCR to name.SRC. Then select this menu command, and enter the
name of the source script (name.SRC) in reply to the file selector dialog which is displayed.

Odyssey will compile the named script, writing a new file called name.SCR (the point to note is that
scripts to be executed by Odyssey must have the .SCR extension whether they are precompiled or
not, otherwise they will not be found by the Command menu or dialing directory). The precompiled
script may thereafter be chosen from the Command menu like any other script, but will load faster
because it does not need to be compiled again.

You can also compile scripts by loading the .SRC file into an Odyssey text editor, and then pressing F9.

See also: Using Odyssey Scripts

Odyssey Menus
Command|1/2/3...9
When you pull down the Command menu, Odyssey searches for any scripts, and displays the first nine it
finds in the Command menu, and numbers them 1 to 9. You can run these scripts by pulling down the
Command menu and pressing the relevant digit.

If Odyssey finds more than nine scripts then it displays only the first nine in the menu, and it also displays
a "More scripts" menu item, leading to a dialog from which you may select any unlisted script.

Odyssey Menus
Command|More scripts...
When you pull down the Command menu, Odyssey searches for any scripts, and displays the first nine it
finds in the Command menu, and numbers them 1 to 9. You can run these scripts by pulling down the
Command menu and pressing the relevant digit.

If Odyssey finds more than nine scripts then it displays only the first nine in the menu, and it also adds the
"More scripts" item to the menu. Selecting this menu item leads to a dialog from which you may select
any of the unlisted scripts.

Odyssey Menus
Window menu
The Window menu is a standard fixture of Multiple Document Interface (MDI) Windows applications. It
exists primarily to allow you to move between open document windows.

Window|Chat mode
Window|Answer (Host) mode
Window|FAX server...
Window|Tile
Window|Cascade
Window|Arrange icons
Window|1/2/3..9
Window|More windows...

Odyssey Menus
Window|Chat mode
This function is disabled unless the active window is the Terminal Window. The Window|Chat mode
menu item toggles Chat mode, ie. if Chat mode is currently in force then this function will terminate that
mode and return to a standard terminal emulation. If Chat mode is inactive then this function enables it.

Chat mode allows you to have a keyboard "chat" with another modem user in real time. The terminal
window is split into two panels - the remote and local panels. The Remote panel shows characters
received from the remote system, and the Local window shows characters typed on the local keyboard.

Press <Esc> to leave Chat mode.

See also: Chat Mode

Odyssey Menus
Window|Answer (Host) mode
This function is only available when the Terminal Window is the active document window. The Window|
Answer (Host) mode menu item causes Odyssey to enter "Host Mode", a mode which allows remote
users to call your system, provided that your modem is configured to auto-answer. Press the <Esc> key to
end Host mode.

See also:
Setup|Host mode dialog
Odyssey Host Mode

Odyssey Menus
Window|FAX server...
This function is only available when the Terminal Window is the active document window. The Window|
Fax server... menu item causes Odyssey to enter "FAX Server Mode". A shortcut for this command is
provided - press ALT+V when the terminal window is active.

See also: Odyssey Fax Server

Odyssey Menus
Window|Tile
The Window|Tile menu item is a standard feature of Windows Multiple Document Interface (MDI)
applications. This command instructs Odyssey to move and resize its child windows so that all are visible,
and none overlap.

Odyssey Menus
Window|Cascade
The Window|Cascade menu item is a standard feature of Windows Multiple Document Interface (MDI)
applications. This command instructs Odyssey to move and resize its child windows so that all are visible,
and overlap in a consistant fashion such that the caption bar of each window is visible.

Odyssey Menus
Window|Arrange icons
The Window|Arrange Icons menu item is a standard feature of Windows Multiple Document Interface
(MDI) applications. This command instructs Odyssey to rearrange minimized child windows so that the
icons are evenly spaces near the bottom of the Odyssey desktop area. This menu item will be grayed if
there are no currently iconic children to rearrange.

Odyssey Menus
Window|1/2/3..9
The F6 key can be used to switch to the "next" Odyssey child window. However, if you want to move to a
specific child window then the only way to do so is to pull down the Window menu and select the child
from the list of menu items numbered 1,2,3...9. If more than nine document windows are opened then a
"More windows" item will be added to the menu. Selecting the latter displays a dialog which allows you to
select any child window, including those not listed on the menu.

Naturally, you can ensure that a document window is always listed on the menu by ensuring that you
never have more than nine document windows open at any time.

Odyssey Menus
Window|More windows...
The F6 key can be used to switch to the "next" Odyssey child window. However, if you want to move to a
specific child window then the only way to do so is to pull down the Window menu and select the child
from the list of menu items numbered 1,2,3...9. If more than nine document windows are opened then the
More windows... item is added to the menu. Selecting this menu item displays a dialog which allows you
to select any child window, including those not listed on the menu.

You may find this a bit long winded, in which case you can ensure that a document window is always
listed on the menu by ensuring that you never have more than nine document windows open at any time.

Odyssey Menus
Help menu
The Help menu gives you access to the major informational topics in the Odyssey help system / user
guide. You can also access help by clicking the ? toolbar button, or by pressing F1 anywhere in Odyssey
for context sensitive information. By convention, the Help menu is always the last item on the menu bar,
and also provides access to "About" box. The items on the Help menu are as follows:-

Help|Contents...
Help|Odyssey configuration...
Help|Using Odyssey...
Help|Odyssey Features...
Help|Odyssey Menus...
Help|Script Tutorial...
Help|Script commands...
Help|Help on help...
Help|About Odyssey...

Odyssey Menus
Help|About Odyssey...
The Help menu gives you access to the major informational topics in the Odyssey help system / user
guide. You can also access help by clicking the ? toolbar button, or by pressing F1 anywhere in Odyssey
for context sensitive information.

The Help|About Odyssey... menu item causes Odyssey to display its "About Box" dialog, which contains
the Odyssey logo, a copyright notice, and contact details for Skyro Software Ltd.

Odyssey Menus
Text Editor Menus
These are the menus available when the text editor window is active.

File menu
Edit menu
Setup menu
Options menu
Block menu
Command menu
Window menu
Help menu

Odyssey Menus
Text Editor File menu
It is conventional for all Windows applications to have a File menu, and for that menu to be the first item
on the main menu bar. The File menu is used when loading and saving documents, printing, and other
operations which concern access to files or directories.

File|Open...
File|Close all
File|Save
File|Save as...
File|Print document
File|Text logging...
File|Printer logging
File|View directory...
File|DOS Shell
File|eXit from Odyssey...

Odyssey Menus (Text Editor)
File|Open...
The File|Open... menu item is used to load a text file into an Odyssey text editor. The user is presented
with a standard File Selector dialog from which to make his choice of files, and a new text editor window
is then opened to display and edit that file. The filename entered into the dialog need not already exist - if
the file does not exist then a new file of that name is created.

The F3 key may be used as a shortcut for this command.

Odyssey Menus (Text Editor)
File|Close all
The File|Close all menu option closes all currently open document windows (directory viewers and
bitmap viewers, text edit windows etc). This is quicker than closing each window individually.

Odyssey Menus (Text Editor)
File|Save
This command instructs Odyssey to save the text document in the currently active text editor window. The
file is saved using its existing name (the name that appears in the window caption). If the "Keep backups"
option is enabled in Setup|Editor then any existing file will be renamed as filename.BAK before the new
file is written.

If you wish to save the file to a different name then choose the File|Save as... option instead.

The F2 key may be used as a shortcut for this command.

Odyssey Menus (Text Editor)
File|Save as...
This command instructs Odyssey to save the text document in the currently active text editor window. A
standard file selector dialog appears, which prompts the user to supply new name for the document. If a
file already exists with the new name then Odyssey will display a dialog asking for confirmation that you
wish to overwrite the existing file.

If you wish to save the file to its current name (the name that appears in the window caption), then choose
the File|Save option instead.

Odyssey Menus (Text Editor)
File|Print document
This command instructs Odyssey to print the text document in the currently active text editor window. In
this case, the entire document is printed - if you wish to print just a portion of the document then you can
do so by marking that section as a block, and then using the "print block" command (Ctrl+K P).

Odyssey Menus (Text Editor)
File|Text logging...
This command is not applicable to the text editor, and is this disabled.

Odyssey Menus (Text Editor)
File|Printer logging
This command is not applicable to the text editor, and is this disabled.

Odyssey Menus (Text Editor)
File|View directory...
The File|View directory... menu item causes Odyssey to open a directory viewer window, which allows
the user to copy, rename and delete files etc. See elsewhere for a detailed description of the Odyssey
Directory Viewer module.

Odyssey Menus (Text Editor)
File|DOS Shell
When the File|DOS Shell menu item is used, Odyssey asks Windows to run a copy of the DOS
command interpreter. This can be useful for users who want to quickly manipulate a few files before
returning to Odyssey.

Odyssey Menus
File|eXit from Odyssey...
Selecting this menu item tells Odyssey to shut itself down. The ALT+X keystroke can be used as a
shortcut for this menu item, as can clicking on the "Exit Odyssey" toolbar button. However, Odyssey asks
for confirmation if you use a shortcut method.

If there are any "modified" text editor windows opened then Odyssey will ask if you wish to save those
files.

Odyssey Menus
Text Editor Edit menu
It is conventional for all Windows applications to have an Edit menu, and for that menu to be the second
item on the menu bar, immediately after the File menu. The Edit menu deals with clipboard operations,
plus specialised application functions which deal with examining or editing the current document.

Edit|Review buffer
Edit|Cut
Edit|Copy
Edit|Paste

Odyssey Menus (Text Editor)
Edit|Review buffer
Selecting the Edit|Review buffer menu item causes Odyssey to open its special "Review Buffer" text
editor window. The Review Buffer is used to display the most recent 32000 characters which was
displayed in the terminal window. You may use the ALT+R keystroke as a shortcut for this menu item.

Odyssey Menus (Text Editor)
Edit|Cut
This menu option causes the Odyssey text editor to "cut" the currently marked and visible block to the
Windows clipboard. In other words, a copy of the current block is placed on the clipboard, and the block is
then deleted from the current document.

Odyssey Menus (Text Editor)
Edit|Copy
This menu option causes the Odyssey text editor to place a copy of the currently marked and visible block
on the clipboard, ready to be pasted into this or another text editor window, or into a text control in another
application.

The Odyssey text editor is a "large file" text editor, ie. there is no limit on the size of file which can
be edited - nor is there a limit on the size of the block you can place on the clipboard. However, you
should be warned that other applications may have difficulty pasting very large blocks (eg. a standard
windows multiline edit control has a 32k size limit, which will of course have to include the text already in
the control). If you want to cut and paste between the Odyssey text editor and another application then
you would be advised to do it incrementally, in reasonable sized chunks.

Odyssey Menus (Text Editor)
Edit|Paste
If any text object is available on the Windows clipboard, then this command causes the Odyssey text
editor to insert that text into the currently active editor window, at the current cursor position. The pasted
text then becomes the currently marked and visible block, to which all the normal editor block commands
may apply.

Odyssey Menus
Text Editor Options menu
The text editor Options menu allows the user to control various mode settings in the currently active
editor. Of of these menu options have keyboard equivalents prefixed with the Ctrl+O sequence.

Options|Insert mode
Options|Auto-indent
Options|Word wrap
Options|Hard tabs
Options|Smart tabs
Options|Create backup files
Options|Right justify lines
Options|End lines with LF

Odyssey Menus (Text Editor)
Options|Insert mode
This command is used to toggle the editor between insert and overtype modes. The legend "Insert" will
appear on the editor status line when the editor is currently in insert mode, or else this word will be
"Overtype" when you are in overtype mode.

Characters typed while the editor is in insert mode are inserted into the document at the current cursor
position, with any characters on the line at and to the right of this position being shifted further right to
make room. The cursor then advances to the right, ending up on the same character it was on before the
insertion.

In Overtype mode the character typed replaces the character previously at that cursor position; the
character overtyped is lost. The cursor then advances to the next column.

The Insert key be also be used to toggle Insert/Overtype modes.

Odyssey Menus (Text Editor)
Options|Auto-indent
Auto-indent refers to the editor feature whereby, when you type <Enter> to begin a new line, that new line
is automatically given the same indentation as the line just completed, and thus the cursor is placed
immediately below the first character of the previous line. When Auto-Indent is disabled the new line is not
given any default indent at all, and the cursor therefore moves to column one in the new line.

The equivalent keyboard shortcut is Ctrl+O I.

Odyssey Menus (Text Editor)
Options|Word wrap
This command toggles "Word Wrap" mode, ie. if the word wrap was initially disabled then this command
will enable it, and vice versa. When word wrap mode is enabled a "Wordwrap" symbol will be visible on
the editor status line.

Word wrap occurs when the cursor reaches the right margin as you type. If that happens then the word
currently being typed is moved to the next line, with the cursor positioned after the last character in the
word. If the "Justification" option is also enabled then the editor will format the line just completed so that
it exactly fits the line between left and right margins.

You may use Ctrl+O W as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Options|Hard tabs
The Odyssey text editor can use Hard Tabs or Soft Tabs (note that this option is independant of the
Smart or Fixed tabs option described next). In Hard Tab mode tab intervals are filled with actual tab
characters (ASCII 9), whereas in soft tab mode the tab interval is filled with spaces. Hard tabs make the
text file smaller, but may create formatting problems if you import the text into an editor that assumes a
different tab interval. The Hard/Soft tab option only affects what Odyssey does when you insert a tab in
the Odyssey editor - selecting soft tabs does not prevent Odyssey interpreting tab characters correctly
when it reads in a foreign ASCII file. Note: the Setup|Editor dialog refers to this feature as the "Tab Fill
Character". If the fill character is Tab then you are using hard tabs, if it is space then you are using soft
tabs.

You may use Ctrl+O H as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Options|Smart tabs
The editor can use Smart Tabs or Fixed Tabs. Smart tabbing means that when you press the tab key,
the editor examines the line above the current line, and aligns the cursor with the next word on that
previous line. This is extremely useful when laying out tables. Fixed tabs are your usual fixed-interval tabs
- the default interval being eight columns, though this can be changed in the Setup|Editor dialog.

You may use the sequence Ctrl+O F as a shortcut for this command.

Odyssey Menus (Text Editor)
Options|Create backup files
This function controls whether or not the Odyssey text editor writes a .BAK file containing the old file
contents, every time you save the file. If you disable this function then no backups are kept.

You may use Ctrl+O B as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Options|Right justify lines
This command toggles "Right Justify" mode. If enabled, the editor ensures that every line exactly meets
the right margin whenever a line or paragraph is reformatted. If disabled line ends are allowed to remain
ragged.

You may use the sequence Ctrl+O J as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Options|End lines with LF
The Odyssey text editor can read files whose lines end in CRLF (the normal DOS convention), or which
end in LF only (the convention for text files originating on Unix systems). Odyssey does not mind if the
same file contains a mixture of different line end types, and you don't need to set any modes in order to
be able to read these files.

However, when you insert new lines, the Odyssey text editor must know whether you want the new line to
end in LF or CRLF, which is why this option exists. If this option is enabled, then new lines will end in LF,
otherwise they will end with CRLF. The editor Options menu shows the current state of the EOL toggle.

You may use the sequence Ctrl+O L as the keyboard shortcut for this command.

Odyssey Menus
Text Editor Block menu
Block commands allow you to mark out a segment of text in order to apply an operation to that entire
segment (block). For example after marking a block you can then choose to delete, copy, move or print
that block. You can also cut or copy the block to the clipboard (or write the block to disk) in order to paste
it into another editor, or another application, and you can read a file from disk and merge it with the
current file, in which case the merged text becomes a new marked block in the current document.

Block|Mark beginning
Block|Mark end
Block|Mark word
Block|Mark line
Block|Hide/Display
Block|Read from file...
Block|Write to file...
Block|Append to file...
Block|Print
Block|Copy
Block|Move
Block|Delete
Block|Indent
Block|Unindent
Block|Paste to serial port

Odyssey Menus (Text Editor)
Block|Mark beginning
This command is used to tell Odyssey that you want a new block to begin at the current cursor position in
the active text editor window. No physical marker appears in the text, however the entire block will be
highlighted once you have marked both beginning and end (in either order). Once a block is marked and
highlighted it may be the subject of other block commands such as move, copy or delete block.

You may use F7 or Ctrl+K B as keyboard shortcuts for this command.

This is the WordStar™ method of marking a block. The Odyssey text editor naturally also
supports the Windows (CUA) method of block marking using the cursor or Shift+<movement key>.

Odyssey Menus (Text Editor)
Block|Mark end
This command is used to tell Odyssey that you want a block to end at the current cursor position in the
active text editor. No physical marker appears in the text, however the entire block will be highlighted
once you have marked both beginning and end (in either order).

You may use F8 or Ctrl+K K as keyboard shortcuts for this command.

This is the WordStar™ method of marking a block. The Odyssey text editor naturally also
supports the Windows (CUA) method of block marking using the cursor or Shift+<movement key>.

Odyssey Menus (Text Editor)
Block|Mark word
This command may be used if you wish to mark a single word as a block so that it may be copied or
moved - the word marked is the one at the cursor position in the currently active editor. Alternatively, you
can mark a word by double-clicking it with the mouse, or by typing Shift+Ctrl+® (although the latter
command is slightly different - it marks from the cursor position to the end of the word).

You may use Ctrl+K T as a shortcut for this command.

Odyssey Menus (Text Editor)
Block|Mark line
This command may be used if you wish to mark the current line as a block so that it can be copied or
moved. The line marked is the one under the cursor in the active text editor.

You may use Ctrl+K L as a shortcut for this command.

Odyssey Menus (Text Editor)
Block|Hide/Display
When a block is marked and highlighted, you may un-highlight it using this command. However, the editor
does not forget where the block markers were, so selecting this option again will cause the block to
become visible once more. The hide block command is most commonly used after a move or copy block
operation, as this leaves a highlighted block at the destination position. If you intend no further operations
on that block then this command will un-highlight it.

You may use Ctrl+K H as a shortcut for this command. You may also hide a block by clicking with the
mouse anywhere inside the text edit window.

Odyssey Menus (Text Editor)
Block|Read from file...
This command is used to read text from a file on disk and insert that text at the cursor position in the
currently active text editor, leaving it as the currently marked and highlighted block. The editor will prompt
for the name of the file containing the text you want to read.

You may use Ctrl+K R as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Write to file...
Writes the currently marked and highlighted block to a file on disk. The editor will prompt for a name to
give to the new file. If a file exists already with the same name then you will be asked whether the existing
file should be erased.

You may use Ctrl+K W as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Append to file...
Appends the currently marked and highlighted block to an existing file on disk. The editor will prompt for
the name of the file to which the block is to be appended.

You may use Ctrl+K A as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Print
This command may be used to copy the currently marked and highlighted block to the printer, which must
be online and ready to receive data.

You may use Ctrl+K P as a keyboard shortcut for this command.

If no block is highlighted when this command is entered then the entire document is printed.

Odyssey Menus (Text Editor)
Block|Copy
Copies the currently marked and highlighted block to the cursor position of the currently active text editor.
The new block then becomes the currently marked block. Attempts to copy a block onto itself are ignored.

The sequence Ctrl+K C may be used as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Move
Moves the currently marked and highlighted block to the cursor position in the currently active editor. The
block remains highlighted at its new position. Attempts to move a marked block into the highlighted area
(ie. onto itself) are ignored. Moving a block is equivalent to copying it to the destination position, and then
deleting the original marked block.

You may use Ctrl+K V as a the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Delete
Deletes the marked and highlighted block from the active text editor, moving remaining text in the
document up to close the gap. A block once deleted is lost.

You may use Ctrl+K Y as a the keyboard shortcut for this command. You may also use Ctrl+Delete, if the
editor is operating in CUA compatible mode.

Odyssey Menus (Text Editor)
Block|Indent
The block indent command increases the left margin offset of a block of text. For example, if the Block|
Indent command is used on a selected paragraph which was indented to column five, then the indent is
increased to column six. The Block|Unindent command would reverse this.

These commands are most useful when working with Odyssey script source files (or other program
source files), in order to apply a uniform re-indentation on a bracketed section of program code.

You may use Ctrl+K I as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Unindent
The block unindent command decreases the left margin offset of a block of text. For example, if the
Block|Unindent command is used on a selected paragraph which was indented to column six, then the
indent is decreased to column five. The Block|Indent command would reverse this.

These commands are most useful when working with Odyssey script source files (or other program
source files), in order to apply a uniform re-indentation on a bracketed section of program code.

You may use Ctrl+K U as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Block|Paste to serial port
Transmits the currently marked and highlighted block (in the active edit window) through the serial port to
a remote host, which must be ready to receive text at the time - note that Odyssey has no way of
checking this first. The effective speed of transmission while pasting can be controlled by adjusting the
ASCII character and line delays in the Setup|File transfer... configuration dialog.

Odyssey Menus
Text Editor Command menu
The editor Command menu provides further text editing commands.

Command|Find...
Command|Replace...
Command|Find again
Command|Go to line number...
Command|Compile script
Command|Convert word to upper case
Command|Convert word to previous case
Command|Set right margin at column
Command|Reformat paragraph

Odyssey Menus (Text Editor)
Command|Find...
This command allows you to search for any occurrence of a string of characters in the current document.
The Find String dialog is displayed, prompting you for the string to find, the string you last searched for
being offered as a default (blank if there was no previous search), and showing current values for several
search options. See the description of the Find String dialog for more detailed information on these
options. You should make any necessary changes to the dialog, then press <Enter> or click on OK to
perform the search.

If the requested string was found, then the cursor will be moved to a point immediately after the string (if
the search direction was forward), or on the start of the string (if the search direction was backwards).

You may use Ctrl+Q F as a keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Replace...
This command is used to search for a string of characters and then replace it with another string. This
command is very similar to the Find command described above, except for the additional prompt in the
Find and Replace dialog for the replacement string. There are also a couple of extra options used when
replacing text - see the description of the Find and Replace dialog for further details.

You may use Ctrl+Q A as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Find again
This command repeats the last Find String, or the last Find and Replace, whichever was done most
recently. For example, if a Find and Replace was used last then another Find and Replace will be
performed.

You may use Ctrl+L as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Go to line number...
This command allows you to quickly jump to a specific line number within the current document. A dialog
prompts you for the line number the editor should jump to.

You may use Ctrl+Q G as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Compile script
If the file loaded in the currently active editor is a source file for an Odyssey script (a .SRC or .SCR file),
then this command allows you to compile that script within the editor. In the case of .SRC files, the
compiled .SCR file is written to disk, assuming that the compilation was successful. In the case of .SCR
files this command simply performs a syntax/semantics check of the script, but does not attempt to write a
compiled version of the script to disk.

If a syntax error occurs while the script is being compiled then the compilation aborts, an error message is
displayed on the status line, and the editor text cursor is set to the position of the syntax error. The error
message is removed from the status line at the first keypress (note: that keypress is not discarded).

You may use F9 as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Convert word to upper case
If the cursor is resting on a word in the currently active text editor, then this command forces that word to
be all capitals.

You may use Ctrl+U as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Convert word to previous case
If the cursor is resting on a word in the currently active text editor, and that word has occurred previously
in the document, then this command changes the case of that word so that it matches the most recent
previous occurrence of that word. This command is most useful when editing Odyssey scripts or other
program sources when you want to ensure that a consistant capitalisation is applied to a program symbol
throughout.

You may use Shift+F7 as the keyboard shortcut for this command.

Odyssey Menus (Text Editor)
Command|Set right margin at column
This command is used to set the right margin required for word wrap and paragraph reformatting
operations. The right margin is set at the cursor column position in the currently active text editor - note
that you are not asked for a column number. The right margin setting will be made permanent if you use
the "Save Setup" option of the Setup menu.

Odyssey Menus (Text Editor)
Command|Reformat paragraph
This command causes the current paragraph in the currently active text editor to be reformatted such that
the paragraph fits between the defined left and right margins. If "Right Justify" is enabled in the Options
menu then the editor will format the paragraph such that each line in the paragraph is the same length,
exactly meeting the right margin.

While the editor has a command to set a right margin, there is no equivalent command to set a left
margin. Instead the editor will format every line to have the same indentation as the first line to be
formatted. For example, to reformat a paragraph with a different left margin, move to the first character of
the first line in the paragraph, type the space bar or backspace to adjust its indentation, then select
Command|Reformat paragraph to reformat. All remaining lines in the paragraph will be given the same
indentation.

The editor considers a paragraph to be any sequence of lines ending in a blank line. Since this is a pure
ASCII editor it does not use special control characters to mark paragraph ends.

 The reformat paragraph command will not work unless word wrap mode is enabled.

This command leaves the cursor on the line following the blank line which ended the paragraph. This is
hopefully where the next paragraph begins, and is intended to make it convenient to step through a
document, reformatting each paragraph in turn.

You may use Ctrl+B as the keyboard shortcut for this command.

Odyssey Menus
Directory Viewer Menus
The Director Viewer menu bar contains the following submenus :-

File menu
Edit menu
Setup menu
Upload/Download menu
Command menu
Help menu

Odyssey Menus (Directory View)
File menu
The following options are available on the Directory Viewer File menu.

File|Open...
File|Close all
File|Move...
File|Copy...
File|Delete...
File|Rename...
File|Show files of type...
File|Select...
File|Deselect all
File|View directory...
File|Create directory
File|DOS Shell
File|eXit from Odyssey

Odyssey Menus (Directory View)
File|Open...
If files are selected in the Directory Viewer file list panel, then the File|Open menu option causes those
files to be opened. The meaning of "Open" depends on the file type (extension). If the file is a recognised
bitmap type, then the enclosed image is displayed in a Bitmap Viewer wIDH_BTMAP_VIEWERindow. If
the file is a Windows .HLP file then Odyssey runs the WinHelp application with that file as an argument. If
the file is an Odyssey script (.SCR) file then Odyssey runs the script. If the file is an application (.EXE)
file then Odyssey asks Windows to run the program. Finally, if the file type is none of the above then
Odyssey assumes it to be an ASCII text file and loads it into a text editor window.

Odyssey Menus (Directory View)
File|Close all
The File|Close all menu option closes all currently open document windows (directory viewers and
bitmap viewers, text edit windows etc). This is quicker than closing each window individually.

Odyssey Menus (Directory View)
File|Move...
The File|Move... menu item may be used to move selected files to a new destination directory ("move"
means that the originals are deleted after the copy is made). If no files are selected in the "File list" panel
then Odyssey assumes that you wish to move the entire directory selected in the directory tree panel
(however, Odyssey does not allow you to move the Odyssey directory!).

A dialog will prompt the user for the name of the destination directory, which must already exist. Use File|
Create directory... first, if the destination directory does not already exist.

 The destination directory for a move or copy must be different from the source directory - an item
cannot be moved or copied onto itself, because DOS does not allow two files in the same directory to
have the same name (copy), and moving a file to the same place it was moved from does not make
sense.

Odyssey Menus (Directory View)
File|Copy...
The File|Copy... menu item may be used to copy selected files to a new destination directory. If no files
are selected in the "File list" panel then Odyssey assumes that you wish to copy the entire directory
selected in the directory tree panel.

A dialog will prompt the user for the name of the destination directory, which must already exist. Use File|
Create directory... first, if the destination directory does not already exist.

 The destination directory for a move or copy must be different from the source directory - an item
cannot be moved or copied onto itself, because DOS does not allow two files in the same directory to
have the same name (copy), and moving a file to the same place it was moved from does not make
sense.

Odyssey Menus (Directory View)
File|Delete...
The File|Delete... menu item may be used to delete selected files from the currently selected directory. If
no files are selected in the "File list" panel then Odyssey assumes that you wish to delete the entire
directory selected in the directory tree panel (however, Odyssey does not allow you to delete the Odyssey
directory, nor does it allow you to delete the root directory of a drive or partition).

Odyssey always requests confirmation before it carries out the deletion. Unlike File Manager, Odyssey
provides no option which disables the confirmation dialog.

Odyssey Menus (Directory View)
File|Rename...
The File|Rename... menu item may be used to rename selected files from the currently selected
directory. A dialog will appear asking you for the new name to give to the file - if more than one file is
selected then the "new name" must be a wildcard. If no files are selected in the "File list" panel then
Odyssey assumes that you wish to rename the directory currently selected in the directory tree panel
(however, Odyssey does not allow you to rename the Odyssey directory).

Odyssey Menus (Directory View)
File|Show files of type...
Odyssey defaults to displaying, in the file list panel, all the files in the current directory which match the
search pattern *.*. However, you can change this by selecting the File|Show Files of Type... menu item,
or by clicking the "New file type" toolbar button.

In either case, you will be prompted for the new wildcard, and the files listed will then change to show only
files matching the new pattern. For example, changing the pattern to *.TXT will cause the file list panel to
be repainted, only listing files in the current directory which have the .TXT extension.

The file list always includes a list of the subdirectories in the current directory, regardless of the
current file type selection.

Odyssey Menus (Directory View)
File|Select...
Normally, you would select items in the Directory Viewer file list panel by clicking them with the mouse, or
by using using standard Windows Shift+<movement key> sequences. However, the File|Select... menu
item provides an alternative which may be quicker if you simply want to select all items in the directory
which match a given wildcard - Odyssey will prompt you for the appropriate wildcard.

Note that this function is additive - ie. previously selected files are not deselected by this operation.

Odyssey Menus (Directory View)
File|Deselect all
The File|Deselect all menu item causes Odyssey to deselect all files in the file list panel of the currently
active Directory Viewer window.

Odyssey Menus (Directory View)
File|View directory...
The File|View directory... menu item causes Odyssey to open another Directory Viewer window. It is
possible to copy files by dragging them between opened viewer windows - this is useful if you want to
copy files between different drives.

Odyssey Menus (Directory View)
File|Create directory
The File|Create directory... menu item may be used to create a new subdirectory of the directory
currently selected in the Directory Tree panel of the currently active Directory Viewer. A dialog will appear,
prompting the user to enter a name for the new directory.

Odyssey Menus (Directory View)
File|DOS Shell
When the File|DOS Shell menu item is used, Odyssey asks Windows to run a copy of the DOS
command interpreter. This can be useful for users who want to quickly manipulate a few files before
returning to Odyssey.

Odyssey Menus (Directory View)
File|eXit from Odyssey
Selecting this menu item tells Odyssey to shut itself down. The ALT+X keystroke can be used as a
shortcut for this menu item, as can clicking on the "Exit Odyssey" toolbar button. However, Odyssey asks
for confirmation if you use a shortcut method.

If there are any "modified" text editor windows opened then Odyssey will ask if you wish to save those
files.

Odyssey Menus (Directory View)
Upload/Download menu
If files are selected in the "file list" panel of the currently active Directory Viewer then you can upload
those files to a remote host by pulling down the Upload menu and selecting a protocol. If no files are
selected then Odyssey assumes that you wish to upload all the files in the directory currently selected in
the Directory Tree panel. Note that you must use a batch protocol if you wish to upload multiple selected
files.

Items in the Download menu are always disabled. This submenu only appears for reasons of symmetry
with the Terminal window menu.

If you wish to perform a Zmodem upload then Odyssey provides a toolbar button as a quicker way of
selecting that option. You may also drag selected files onto the Zmodem button with similar results.

Odyssey Menus (Directory View)
Command Menu
The Command menu provides options which affects what Odyssey displays in the file list panel of the
currently active Directory Viewer window.

Command|Show filenames only
Command|Show all file details
Command|Expand branch
Command|Collapse branch
Command|Sort by name
Command|Sort by type
Command|Sort by size
Command|Sort by date

Odyssey Menus (Directory View)
Command|Show filenames only
An Odyssey Directory Viewer can list files in two formats:

In Filename Only format, the file listing is a multicolumn format containing just the tail part of the name of
each file matching the current file type mask. This allows you to see more files, but doesn't give you any
detail about individual files apart from their names.

In All File Details format, the file listing switches to a single column format, with the attributes of each file
listed in detail. The details include the size in bytes of the file, the file date and time stamp, plus the file
permissions.

Odyssey Menus (Directory View)
Command|Show all file details
An Odyssey Directory Viewer can list files in two formats:

In Filename Only format, the file listing is a multicolumn format containing just the tail part of the name of
each file matching the current file type mask. This allows you to see more files, but doesn't give you any
detail about individual files apart from their names.

In All File Details format, the file listing switches to a single column format, with the attributes of each file
listed in detail. The details include the size in bytes of the file, the file date and time stamp, plus the file
permissions shown as a field of attribute characters. The characters and their meanings are as follows :-

Attribute Meaning
character.

A - The file has the "archive" attribute bit set, meaning that it has been modified since the
last time it was backed up.

H - The file is hidden (it does not appear in a normal DOS directory listing).
S - The file is a system file.
R - The file is marked read-only.

Odyssey Menus (Directory View)
Command|Expand branch
If a Directory Tree folder has an icon like this: or this:

, then this tells you that the associated directory has subdirectories which are not currently displayed in
the directory tree (they will be displayed in the file listing). You can make the directory tree panel display
those subdirectories by selecting the Command|Expand branch menu item.

You can do the same thing by double-clicking on the folder you want to expand, or by pressing the + key
(the key on the numeric keypad is best for this), which expands the currently highlighted folder.

Odyssey Menus (Directory View)
Command|Collapse branch
If you no longer want to see the subdirectories of a particular folder in the Directory Tree panel, then you
can hide those entries by highlighting the parent folder and selecting the Command|Collapse branch
menu item.

You can get the same result by double-clicking on the parent folder or by pressing the - key (the key on
the numeric keypad is best for this).

Odyssey Menus (Directory View)
Command|Sort by name
By default, the Odyssey directory viewer lists files sorted in alphabetical order of their name ("a..." first).
However, other sorting methods are supported. To change the sorting method, pull down the directory
viewer Command menu, and choose one of the Sort by xxxx options - a check mark will be shown
beside the menu item relating to the current sorting method.

If Command|Sort by name is selected then files are listed in alphabetical order of their name. This is the
default sorting order, as described above.

Odyssey Menus (Directory View)
Command|Sort by type
By default, the Odyssey directory viewer lists files sorted in alphabetical order of their name ("a..." first).
However, other sorting methods are supported. To change the sorting method, pull down the directory
viewer Command menu, and choose one of the Sort by xxxx options - a check mark will be shown
beside the menu item relating to the current sorting method.

If Command|Sort by type is selected then files are sorted first by their extension, and then (within a
group of files with the same extension) by name. This has the effect of ensuring that files with the same
extension are listed next to each other.

Odyssey Menus (Directory View)
Command|Sort by size
By default, the Odyssey directory viewer lists files sorted in alphabetical order of their name ("a..." first).
However, other sorting methods are supported. To change the sorting method, pull down the directory
viewer Command menu, and choose one of the Sort by xxxx options - a check mark will be shown
beside the menu item relating to the current sorting method.

If Command|Sort by size is selected then files are sorted so that the largest files appear at the top of the
list, and the smallest files at the bottom. If your disk is nearly full then finding the largest files you no
longer need, and deleting them, has the quickest payoff in terms of recovering disk space.

Odyssey Menus (Directory View)
Command|Sort by date
By default, the Odyssey directory viewer lists files sorted in alphabetical order of their name ("a..." first).
However, other sorting methods are supported. To change the sorting method, pull down the directory
viewer Command menu, and choose one of the Sort by xxxx options - a check mark will be shown
beside the menu item relating to the current sorting method.

If Command|Sort by date is selected then files are sorted by age, with the oldest files at the top of the
list. You might use this to find files which you haven't needed in a long time, and liberating the disk space
they occupy.

Odyssey Menus
Bitmap Viewer Menus
These are the items available on the menu bar when a Bitmap Viewer is the active document window.

File menu
Edit menu
Setup menu
Command menu
Window menu
Help menu

Odyssey Menus (Bitmap Viewer)
File menu
Below are the options available on the File menu when the current document window is a Bitmap Viewer.

File|Open...
File|Close all
File|Save
File|Save as...
File|Print bitmap
File|Delete bitmap...
File|Text logging...
File|Printer logging
File|View directory...
File|DOS Shell
File|eXit from Odyssey...

Odyssey Menus (Bitmap Viewer)
File|Open...
The File|Open... menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
File|Close all
The File|Close all menu option closes all currently open document windows (directory viewers and
bitmap viewers, text edit windows etc). This is quicker than closing each window individually.

Odyssey Menus (Bitmap Viewer)
File|Save
The File|Save menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
File|Save as...
The File|Save as... menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
File|Print bitmap
You can print a bitmap by reading the bitmap file into an Odyssey bitmap viewer and then selecting File|
Print bitmap... from the Bitmap Viewer main menu, or by clicking on the "print" toolbar button.

Odyssey Menus (Bitmap Viewer)
File|Delete bitmap...
Sometimes, having viewed a bitmap image you have just downloaded, you will decide that you do not
wish to keep that image. You can delete the bitmap file when the viewer is active by selecting File|Delete
bitmap... or by clicking the "trashcan" toolbar button. You will be asked to confirm that you really want to
delete the bitmap file.

You are not allowed to delete a FAX file if the bitmap viewer was opened in order to preview a FAX before
transmission, because the FAX server always deletes such temporary fax files itself.

Odyssey Menus (Bitmap Viewer)
File|Text logging...
The File|Text logging... menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
File|Printer logging
The File|Printer logging menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
File|View directory...
The File|View directory... menu item causes Odyssey to open a directory viewer window, which allows
the user to copy, rename and delete files etc. See elsewhere for a detailed description of the Odyssey
Directory Viewer module.

Odyssey Menus (Bitmap Viewer)
File|DOS Shell
When the File|DOS Shell menu item is used, Odyssey asks Windows to run a copy of the DOS
command interpreter. This can be useful for users who want to quickly manipulate a few files before
returning to Odyssey.

Odyssey Menus (Bitmap Viewer)
File|eXit from Odyssey...
Selecting this menu item tells Odyssey to shut itself down. The ALT+X keystroke can be used as a
shortcut for this menu item, as can clicking on the "Exit Odyssey" toolbar button. However, Odyssey asks
for confirmation if you use a shortcut method.

If there are any "modified" text editor windows opened then Odyssey will ask if you wish to save those
files.

Odyssey Menus (Bitmap Viewer)
Edit menu
These are the items available on the Edit menu when the active document window contains a Bitmap
Viewer.

Edit|Review buffer
Edit|Cut
Edit|Copy
Edit|Paste

Odyssey Menus (Bitmap Viewer)
Edit|Review buffer
The Edit|Review buffer menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
Edit|Cut
The Edit|Cut menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
Edit|Copy
You can copy a bitmap image to the clipboard by first reading the bitmap file into an Odyssey bitmap
viewer and then selecting Edit|Copy... from the Bitmap Viewer menu.

The bitmap is always copied to the clipboard in DIB (CF_DIB) format, in order that palette information is
preserved for the target application.

Odyssey Menus (Bitmap Viewer)
Edit|Paste
The Edit|Paste menu item is disabled when a Bitmap Viewer is the active document window.

Odyssey Menus (Bitmap Viewer)
Command menu
The following are the items available on the Command menu when the active document window contains
a Bitmap Viewer.

Command|First page
Command|Previous page
Command|Next page
Command|Last page
Command|Top of page
Command|Bottom of page

Odyssey Menus (Bitmap Viewer)
Command|First page
If the bitmap file contains more than one page (eg. a multi-page FAX file), then Command|First page can
be used to move to the first page.

You may use Ctrl+Home as a keyboard shortcut for this command.

Odyssey Menus (Bitmap Viewer)
Command|Previous page
If the bitmap file contains more than one page (eg. a multi-page FAX file), then Command|Previous
page can be used to move to the previous page, if any.

You may use Ctrl+PgUp as a keyboard shortcut for this command.

Odyssey Menus (Bitmap Viewer)
Command|Next page
If the bitmap file contains more than one page (eg. a multi-page FAX file), then Command|Next page can
be used to move to the next page in the bitmap file, if any.

You may use Ctrl+PgDn as a keyboard shortcut for this command.

Odyssey Menus (Bitmap Viewer)
Command|Last page
If the bitmap file contains more than one page (eg. a multi-page FAX file), then Command|Last page can
be used to move to the last page.

You may use Ctrl+End as a keyboard shortcut for this command.

Odyssey Menus (Bitmap Viewer)
Command|Top of page
The Command|Top of page command ensures that the top left of the bitmap page is aligned with the top
left of the viewing window - ie. this command takes you to the top of the bitmap page.

You may use Shift+Home as a keyboard shortcut for this command.

Odyssey Menus (Bitmap Viewer)
Command|Bottom of page
The Command|Bottom of page command ensures that the bottom left of the bitmap page is aligned with
the bottom left of the viewing window - ie. this command takes you to the bottom of the bitmap page.

You may use Shift+End as a keyboard shortcut for this command.

Odyssey Menus
Fax Server Menu
These are the items available on the menu bar when the Fax Server is the active document window.

File menu
Edit menu
Setup menu
Command menu
Window menu
Help menu

Odyssey Menus (Fax Server)
File menu
These are the items available on the Fax Server file menu. Note that many are not applicable to Fax
Server mode and are therefore disabled.

File|Open...
File|Close all
File|Save
File|Save as...
File|Print screen
File|Text logging...
File|Printer logging
File|View directory...
File|DOS Shell
File|eXit from Odyssey...

Odyssey Menus (Fax Server)
File|Open...
The terminal window File|Open... menu item is used to load a text file into an Odyssey text editor. The
user is presented with a standard File Selector dialog from which to make his choice of files, and a text
editor window is then opened to display and edit that file. The filename entered into the dialog need not
already exist - if the file does not exist then a new file of that name is created.

If you were looking for a way to open a Fax document, just double-click on the appropriate line in
the "Received FAXes" window.

Odyssey Menus (Fax Server)
File|Close all
This menu item is not applicable to Fax Server mode, and is therefore disabled.

Odyssey Menus (Fax Server)
File|Save
This menu item is not applicable to Fax Server mode, and is therefore disabled.

Odyssey Menus (Fax Server)
File|Save as...
This menu item is not applicable to Fax Server mode, and is therefore disabled.

Odyssey Menus (Fax Server)
File|Print screen
This menu item is not applicable to Fax Server mode, and is therefore disabled.

Odyssey Menus (Fax Server)
File|Text logging...
This menu item is not applicable to Fax Server mode, and is therefore disabled.

Odyssey Menus (Fax Server)
File|Printer logging
This menu item is not applicable to Fax Server mode, and is therefore disabled.

Odyssey Menus (Fax Server)
File|View directory...
The File|View directory... menu item causes Odyssey to open a directory viewer window, which allows
the user to copy, rename and delete files etc. See elsewhere for a detailed description of the Odyssey
Directory Viewer module.

Odyssey Menus (Fax Server)
File|DOS Shell
When the File|DOS Shell menu item is used, Odyssey asks Windows to run a copy of the DOS
command interpreter. This can be useful for users who want to quickly manipulate a few files before
returning to Odyssey. The keystroke ALT+O can be used as a shortcut for this menu item.

Odyssey Menus (Fax Server)
File|eXit from Odyssey...
Selecting this menu item tells Odyssey to shut itself down. The ALT+X keystroke can be used as a
shortcut for this menu item, as can clicking on the "Exit Odyssey" toolbar button. However, Odyssey asks
for confirmation if you use a shortcut method.

If there are any "modified" text editor windows opened then Odyssey will ask if you wish to save those
files.

Odyssey Menus (Fax Server)
Command menu
Below are the items available on the Command menu when the active document window is the Fax
Server.

Command|Send Fax...
Command|View Fax...
Command|Print Fax...
Command|Export Fax to PCX/TIF...
Command|Delete Fax...

Odyssey Menus (Fax Server)
Command|Send Fax...
The menu item Command|Send Fax... is used after you have prepared a text file of PCX/TIFF image,
and you want to send it to a Fax destination. This menu item leads to the Send Fax dialog, whose
description you should read for further information.

You can use the "Send Fax" toolbar button as a shortcut for this menu item.

Odyssey Menus (Fax Server)
Command|View Fax...
The Command|View Fax... menu item leads to a standard File Selector dialog, which you can use to
select the Fax file you wish to view. You can use the "View Fax" toolbar button as a shortcut for this
command.

A quicker way to select a Fax document for viewing is to simply double-click on the document where it
appears in the "Received FAXes" window - however this method only works in the FAX file is still in the
Fax directory.

Odyssey Menus (Fax Server)
Command|Print Fax...
The Command|Print Fax... menu item leads to the Print Fax dialog, which allows you to select the Fax
file and also the range of pages within that file which you wish to print. You can use the "printer" toolbar
button as a shortcut for this menu item.

You can also print individual Fax pages from the Bitmap Viewer.

Odyssey Menus (Fax Server)
Command|Export Fax to PCX/TIF...
The Command|Export Fax... menu item leads to the Export Fax dialog, which allows you to select the
Fax file and also the range of pages within that file which you wish to export, as well as the graphics file
format (PCX or TIFF) you wish to use. You can use the "Export Fax" toolbar button as a shortcut for this
menu item.

Odyssey Menus (Fax Server)
Command|Delete Fax...
The Command|Delete Fax... menu item leads to a standard File Selector dialog, which you can use to
select the Fax file you wish to delete. You can use the "trashcan" toolbar button as a shortcut for this
command.

Odyssey Menus
Archive Viewer Menus
These are the items available on the menu bar when an Archive Viewer is the active document window.

File menu
Edit menu
Setup menu
Command menu
Window menu
Help menu

Odyssey Menus (Archive Viewer)
Command Menu
Below are the items available on the Command menu when the active document window is an Archive
Viewer :-

Command|Extract files...
Command|Set decryption password...
Command|Show files of type...
Command|Unsorted list
Command|Sort by name
Command|Sort by type
Command|Sort by size
Command|Sort by date

Odyssey Menus (Archive Viewer)
Command|Extract files...
The Command|Extract files... menu item is used when you wish to extract or unpack files from the
archive file associated with the currently active Archive Viewer window. Note that you do not need to
extract files simply in order to view them - if you merely wish to view a file in an archive then just double-
click on the listbox entry for the compressed file you wish to view.

This menu item leads to the Extract files... dialog, which is described in detail elsewhere.

There is also an "Extract files..." toolbar button, which may be used as a shortcut for selecting this menu
item.

Odyssey Menus (Archive Viewer)
Command|Set decryption password...
The Command|Set decryption password... menu item is applicable to ZIP archives only.

The ZIP format allows files to be encrypted with a password string. If that is done, then a person wishing
to view or extract the encrypted file must know what that password is, since there is no way to
decompress the file without it.

When you ask Odyssey to unpack an archive, it starts by displaying the Extract files... dialog, which
includes a text field into which you can enter the password for decryption (if required). However, when
viewing individual files no dialog is displayed, so in order to successfully view encrypted files you must
first tell Odyssey the password, using this menu option to do so. Selecting this menu option causes
Odyssey to prompt you for the password.

Note that an individual password must be set separately (when necessary) for every Archive Viewer
window currently open. This password is forgotten when the window is closed (for obvious security
reasons, Odyssey does not save entered passwords in order to display them as defaults later), Odyssey
does however associate the entered password with an Archive Viewer window for as long as that
window remains open.

Finally, note that while Odyssey can quickly determine whether the password entered is wrong, it is not
possible for us to determine what your correct password is if you have forgotten it.

Odyssey Menus (Archive Viewer)
Command|Show files of type...
Odyssey defaults to displaying, in the file list panel of an Archive Viewer window, all the files stored in the
associated archive which match the search pattern *.*. However, you can change this by selecting the
File|Show Files of type... menu item, or by clicking the "Show files of type..." toolbar button.

In either case, you will be prompted for the new wildcard, and the files listed will then change to show only
files which match the new pattern. For example, changing the pattern to *.TXT will cause the file list panel
to be repainted, only listing files in the archive which have the .TXT extension.

When you ask Odyssey to "Unpack all files" from an archive, it will only ever unpack files which
are currently listed in the Archive Viewer window. In other words, following the example above,
unpacking all files would mean "Unpack all files in the archive which have the '.TXT' extension".

Odyssey Menus (Archive Viewer)
Command|Unsorted list
By default, the Odyssey Archive Viewer lists files unsorted, ie. listed in the order in which the files are
stored in the archive. However, a number of sort order options are supported. To change the sort order,
pull down the Archive Viewer Command menu, and choose one of the Sort by xxxx options - a check
mark will be shown beside the menu item relating to the currently selected sorting method.

If Command|Unsorted list is selected then files are listed in the order in which they are stored in the
archive. This is the default sorting order, as described above.

Odyssey Menus (Archive Viewer)
Command|Sort by name
By default, the Odyssey Archive Viewer lists files unsorted, ie. listed in the order in which the files are
stored in the archive. However, a number of sort order options are supported. To change the sort order,
pull down the Archive Viewer Command menu, and choose one of the Sort by xxxx options - a check
mark will be shown beside the menu item relating to the currently selected sorting method.

If Command|Sort by name is selected then files are listed in alphabetical order of their name, ie.
"Axxxxx" first.

Odyssey Menus (Archive Viewer)
Command|Sort by type
By default, the Odyssey Archive Viewer lists files unsorted, ie. listed in the order in which the files are
stored in the archive. However, a number of sort order options are supported. To change the sort order,
pull down the Archive Viewer Command menu, and choose one of the Sort by xxxx options - a check
mark will be shown beside the menu item relating to the currently selected sorting method.

If Command|Sort by type is selected then files are sorted first by their extension, and then (within a
group of files sharing the same extension), by name.

Odyssey Menus (Archive Viewer)
Command|Sort by size
By default, the Odyssey Archive Viewer lists files unsorted, ie. listed in the order in which the files are
stored in the archive. However, a number of sort order options are supported. To change the sort order,
pull down the Archive Viewer Command menu, and choose one of the Sort by xxxx options - a check
mark will be shown beside the menu item relating to the currently selected sorting method.

If Command|Sort by size is selected then files are listed in decreasing order of their uncompressed size
(the column labeled as "Length" in the Archive Viewer window). Ie. the largest file appears first in the list.

Odyssey Menus (Archive Viewer)
Command|Sort by date
By default, the Odyssey Archive Viewer lists files unsorted, ie. listed in the order in which the files are
stored in the archive. However, a number of sort order options are supported. To change the sort order,
pull down the Archive Viewer Command menu, and choose one of the Sort by xxxx options - a check
mark will be shown beside the menu item relating to the currently selected sorting method.

If Command|Sort by date is selected then files are listed in date/time order, the oldest file being listed
first.

Odyssey Help
Reference
Choose one of the reference topics listed below:

Script Language Tutorial
Script Language Commands
Cabling Requirements

Odyssey Help
Cabling Requirements
The cabling requirements for successful communications depends very much on exactly what kind of
devices you are trying to connect. The topics below list precise requirements for a variety of device types
which you are likely to encounter :-

Modem Cables:
PC (25 pin) to Modem (25 pin)
PC (9 pin) to Modem (25 pin)

Null Modem Cables (ie. PC-PC):
PC (25 pin) to PC (25 pin)
PC (25 pin) to PC (9 pin)
PC (9 pin) to PC (9 pin)

When selecting a cable to use for modem communications you should be extremely wary of using a ready
made one designed for use with a serial printer. These are often totally unsuited for use with a modem.
For example, they often have the carrier pin tied high to satisfy the printer or IBM PC BIOS, which is
totally wrong for a modem cable, if you want the modem to be able to signal the presence or not of a
carrier to the PC (as Odyssey requires).

If you are not sure how a particular cable is wired up then open it up and check it. If it has more pins
connected than are shown in these diagrams, that is no problem. If however you see pins connected
together at one end then do not use that cable for comms unless the connections match the appropriate
cable outlined in one of the above topics. If the cable has moulded plastic connectors that cannot be
opened, then do not trust it unless you know that it was designed for modem rather than printer use.

The important signals to check are DTR, RTS and TX coming from the PC, and DSR, CTS, DCD, RI, and
RX coming from the modem. All of the cable diagrams presented in this appendix are designed to make
sure that these signals are presented properly to each side of the connection.

Odyssey Cable Requirements
PC (25 pin) to Modem (25 pin)
Connecting a 25 pin PC port to a modem uses the simplest cable there is, a straight ribbon cable with
snap on connectors. If you cannot provide yourself with this then the following cable should be the
minimum full specification cable for a PC. The arrows on the connectors show the direction of the signal.

TX - Transmit
RX - Receive
RTS - Request to send
CTS - Clear To Send
DSR - Data Set Ready
GND - Ground
DCD - Data Carrier Detect
DTR - Data Terminal Ready
RI - Ring Indicator

Odyssey Cable Requirements
PC (9 pin) to Modem (25 pin)
Connecting an 9-pin PC port to a modem is more work, because few (if any) modems on the market
come with AT style 9 pin connectors. The following cable will do the trick.

TX - Transmit
RX - Receive
RTS - Request to send
CTS - Clear To Send
DSR - Data Set Ready
GND - Ground
DCD - Data Carrier Detect
DTR - Data Terminal Ready
RI - Ring Indicator

Odyssey Cable Requirements
PC (25 pin) to PC (25 pin)
The remaining cables are all "null modem" cables, for directly connecting computers together, starting
with PC-25pin to PC-25pin.

TX - Transmit
RX - Receive
RTS - Request to send
CTS - Clear To Send
DSR - Data Set Ready
GND - Ground
DCD - Data Carrier Detect
DTR - Data Terminal Ready
RI - Ring Indicator

Odyssey Cable Requirements
PC (25 pin) to PC (9 pin)
This null modem cable connects PC-25pin to PC-9pin.

TX - Transmit
RX - Receive
RTS - Request to send
CTS - Clear To Send
DSR - Data Set Ready
GND - Ground
DCD - Data Carrier Detect
DTR - Data Terminal Ready
RI - Ring Indicator

Odyssey Cable Requirements
PC (9 pin) to PC (9 pin)
This null modem cable connects PC-9pin to PC-9pin.

TX - Transmit
RX - Receive
RTS - Request to send
CTS - Clear To Send
DSR - Data Set Ready
GND - Ground
DCD - Data Carrier Detect
DTR - Data Terminal Ready
RI - Ring Indicator

Odyssey Help
Acknowledgments, Trademarks etc
DEC is a registered trademark of Digital Equipment Corporation

IBM is a registered trademark of International Business Machines Corporation.

MNP is a registered trademark of Microcom, Inc.

MS-DOS and Windows™ are trademarks of Microsoft Corporation.

The Graphics Interchange Format © is the Copyright property of Compuserve Incorporated. GIF(sm) is a
Service Mark property of Compuserve Incorporated.

The Odyssey ZIP, ARC and LZH archive readers were written from scratch by the Odyssey author, and
are definitely not derived from any freeware or public domain sources you may be aware of. However, the
author wishes to acknowledge his gratitude in particular towards the Info-ZIP group (who distribute
copyrighted, but freeware sources for ZIP) - while I didn't use their code, it did serve an extremely
valuable role as additional documentation for the ZIP algorithms, over and above the rather terse
APPNOTE.TXT provided by PKWare. There was certainly nothing wrong with their code, I simply prefer to
write such complex stuff myself, since that is the only way I can be sure of fully understanding what it
does. I would also, naturally, like to thank Phil Katz of PKWare for making APPNOTE.TXT available, and
hope that he is able to continue doing so in future.

Likewise, public domain or freeware sources for ARC and LZH readers served as valuable
documentation for those formats, even though I didn't actually need to use their code. The author of the
ARC sources I used is not known (DEARC5.PAS, readily available from many hosts). The LZH sources I
used initially came from the IBMPRO forum on Compuserve, and were written by Haruyasu Yoshizaki,
who also wrote LHARC and LHA. Another important source of LZH documentation was some sources I
found on the Internet, written by Thomas Quester in Germany, who had done a lot to work out the LHA -
lh5- algorithm. Thomas had done me a favor by recoding the latter algorithm in C, making it far easier for
me to understand than Yoshi's assembler equivalents.

A word about my JPEG reader as well: that too is entirely original, based on the JPEG standard as
printed in the book "The JPEG Still Image Data Compression Standard", by Pennebaker and Mitchell
(published in 1993 by Van Nostrand Reinhold, ISBN: 0-442-01272-1). That book is thoroughly
recommended to anyone interested in JPEG - not only does it publish the standard in full, it also contains
a wealth of information on how to write the most efficient DCT and inverse DCT (IDCT) functions possible
(ie. those involving the least number of multiplications).

Odyssey Features
Viewdata (PRESTEL) Emulation
For compatibility with previous versions of Odyssey, the Viewdata terminal emulation module is called
PRESTEL.TRM, and dialing directory entries or scripts which wish to select Viewdata emulation should
select the PRESTEL emulation as before.

You may choose to use the Viewdata emulation in either full screen or split screen modes. In the latter
mode the right hand side of the split screen is used to display a help screen at all times. In full screen
modes the help screen can be viewed by pressing a key (described fully later).

Viewdata systems are based on frames. That is, the data is displayed using a complete screenful at a
time. When we mention the word frame in this supplement we refer to what you can see on your screen.

Systems you can Access
Split Baudrates
Running the Viewdata Emulation
Connecting to the Viewdata Service
The User Help Screen
Creating Keyboard Macros
Logging and then Viewing a Session
Screen Snapshots
Printing the Viewdata Screen
Redisplaying Frames
The Frame Editor
Uploading Mail
Downloading Files

Odyssey Viewdata Emulation
Systems you can Access
The standard supported by the Odyssey Viewdata emulation is originally that of the British Telecom
PRESTEL system, but is now used in many countries. Some of these countries are :-

Country Service

Australia Discovery 40
UK Prestel
Denmark Teledata
Finland Videotex
Italy Videotel
Netherlands Viditel
Norway Teledata
Sweden Videotex

In addition, a number of private Viewdata services have appeared, such as private databases and home
banking systems. In this supplement we refer to all such services as Viewdata services.

Some countries use a Viewdata system of another type. The Odyssey Viewdata emulation is not
compatible with the French Teletel (Minitel) system, or with the German, Austrian, Swiss or Spanish
systems (BTX, VTX, IBERTEX).

Odyssey Viewdata Emulation
Split Baudrates
Some of the access numbers for Viewdata services use only V.23 split baudrate, ie. you receive data at
1200 bps but send at 75 bps. Odyssey can use that type of system only if your modem offers speed
buffering, that is, the modem will handle the V.23 part, but will talk to Odyssey at 1200 baud in both send
and receive, buffering 1200 bps data from Odyssey and sending it on at 75 bps to the service.

The UK Prestel system has in recent years starting upgrading their access numbers to 2400 bps
full duplex, and perhaps even higher speeds by the time you read this. You would be well advised to start
using those numbers, if your modem is capable of supporting the higher speeds.

Odyssey Viewdata Emulation
Running the Viewdata Emulation
See the Terminal Emulation topics for information on how to select Viewdata emulation. When the
emulation first loads, the screen will be divided into two distinct parts; the left hand side is where you will
see the data coming from the Viewdata service. If you wish, this data can be displayed across the full
screen by pressing CTRL+F10.

The right hand side of the display shows the main help menu. In full screen mode you can view this help
screen by pressing ALT+Z (press any key to restore the terminal screen). In split screen mode the help
screen is always visible.

Odyssey Viewdata Emulation
Connecting to the Viewdata Service
Before connecting to a Viewdata service you should first enter the details of the service into an Odyssey
Dialing Directory record. Remember in particular to set the correct telephone number, baud rate and
parity (most Viewdata services currently expect even parity), and make sure you have selected the
PRESTEL terminal in the "emulation" field.

Some Viewdata services send the Enquiry response character (ENQ, or ascii code 5) to your terminal,
which requests the terminal to send some sort of identification sequence (usually a user number,
password or account number). When the Odyssey Viewdata emulation receives this character it will
transmit whatever is defined as macro 0 in the Setup|Macros dialog. You can define this macro to be
anything you like - including nothing, if you prefer to enter this reply manually.

If you want to send commands to your modem while offline, and while running the Viewdata emulation,
please remember that the emulation maps the enter key as '#', which will prevent you from using it to
complete modem commands. You can however use the alternative enter key on the numeric keypad,
which will still send the normal carriage return character. We recommend that unless you are using the
Viewdata emulation offline for a specific reason (perhaps to use the frame editor) that you have Odyssey
normally default to a "standard" emulation offline (such as TTY), and have Odyssey switch to Viewdata
emulation only when it connects to a Viewdata service. Odyssey will perform this switch at the right time
automatically, provided that Prestel emulation is selected in the dialing directory entry.

To access specific pages or frames on a Viewdata service you must select it by number. This is done by
keying '*', followed by the number, followed by hash (#) or underscore (_). As mentioned above, the
Odyssey Viewdata emulation will send hash for you when you press the enter key. Viewdata services
were not originally designed to be called from PC's, which is the reason for the unusual, if not awkward,
choice of keys.

Odyssey Viewdata Emulation
The User Help Screen
The main help screen is not the only help you can get in the Odyssey Viewdata module. There is also a
help screen which you can view when using the frame editor, and you can even create your own screen,
and access it by keying ALT+U.

You may want to create a user help screen if there is some information you would like to have at hand
when necessary. It may for instance be a list of interesting pages on your Viewdata service, or a table of
semi-graphic characters if you design frames or graphic mail.

The User Help screen behaves like any other help screen: in split screen mode it will stay on the screen
until you decide to remove it. In full screen mode the user help goes away when you press a key. You can
view the user help screen at any time while using the Odyssey Viewdata module - even while using the
Viewdata frame editor.

If you wish to restore the standard help screen for whichever Viewdata mode you are currently using, just
press ALT+Z.

To modify the User Help Screen you should :-

· Load the file VDUSER.PIC into the frame editor and edit it.

· When you are done you should save the edited picture as VDUSER.PIC (no other name will do), and
you must also save it in the Odyssey program files directory.

· Drop out to DOS, go to the Odyssey directory and run the PIC2HLP program. This will convert the
VDUSER.PIC format into a new file VDUSER.HLP which is suitable for use as a Viewdata help file.

{mbc finger.mrb}Note that the Viewdata HLP files are compatible with the DOS version of the Odyssey
Viewdata emulation, and are NOT compatible with Windows HLP files.

Odyssey Viewdata Emulation
Creating Keyboard Macros
You can use the standard Odyssey keyboard macro facility (see Setup|Edit Macros) to create macros for
use on a Viewdata system. Remember however that macro 0 is reserved for use as the enquiry response
string; the remaining nine macros may be used for your own purposes.

One other point you should be aware of is that the Odyssey macro menu assumes the ASCII character
set, which is suitable for all services - except Viewdata. In particular, if you want a macro to send the
Viewdata hash (#) character your macro should actually contain underscore (_), which is the ASCII
character whose code corresponds to the Viewdata code for a hash.

Odyssey Viewdata Emulation
Logging and then Viewing a Session
You can use the standard Odyssey text logging feature to log a Viewdata session. However, you should
make sure that you select raw logging mode. This will make sure that Odyssey retains all the necessary
Viewdata terminal control sequences and characters which will allow you to play back the session offline
using the Viewdata View Log feature. Odyssey will automatically enable raw logging when you select
PRESTEL as the terminal type in the emulation field of a dialing directory entry.

You can view (play back) any Viewdata log file after it has been saved (see the Redisplay frame feature if
you just want to view a couple of recent frames without closing the log file).

To view a log file press ALT+V, and then enter the name you gave to the log file. As you view the log,
each frame will be shown one at a time, each staying on the screen for a short while before being
replaced by the next one in the file, and so on. If you want to pause at a particular frame then just press
the <space> bar when it appears. When the frame is paused like that you will also be given the
opportunity to print the frame, or save it to disk as a picture file which you can edit using the frame editor.

You can also use the standard Odyssey "Playback" feature (accessed from the Command menu) to play
back a Viewdata log. The standard playback mode is different from the specialised Viewdata viewer in
that it updates the display on a character by character basis, rather than frame by frame. This is quite
useful if you want to play back a Prestel "dynamic" frame (frames containing animation etc), and be able
to see the dynamic aspect.

There is a trick you can use if you want to convert a raw Viewdata log into an ASCII log (ie. a file you can
edit in an ASCII editor). The trick is to use the standard Odyssey playback mode to play back the raw log,
while at the same time logging the output of the playback!. The new log should naturally be creating with
raw logging disabled, otherwise you will have simply discovered a rather slow way of copying the file! You
must also remember to give a different name for the second log file, otherwise the best that will happen is
that the new log will overwrite the first as it is being read, producing non too wonderful results.

Odyssey Viewdata Emulation
Screen Snapshots
If you only want to save a single frame, you can do so more simply than creating a log of the entire
session. You can instead save a screen snapshot to disk. To save a snapshot you simply press ALT+D
when the frame you wish to save appears on the screen, while online to the service. You will be asked for
a name to give to the snapshot file, which will be given a .PIC extension by default. You can load this
picture file into the frame editor later when you want to look at it.

Odyssey Viewdata Emulation
Printing the Viewdata Screen
You can print the terminal screen at any time by pressing Ctrl+P. You must first ensure that the printer is
online, and of course if the printer is attached to a serial port it must not be sharing the same port as the
modem, if the modem is online at the time. The Viewdata print screen routine maps many Viewdata
mosaic characters to IBM PC characters before printing. This can produce quite acceptable results, but
does of course require that your printer can cope with IBM PC non-ASCII characters. If your printer
cannot handle that then you can force the Odyssey Viewdata module to print using ASCII characters only
by toggling the printer type to non-IBM, by keying ALT+P.

Of course, if your printer is capable of handling bitmaps then you can just print the screen using normal
Windows procedures.

Odyssey Viewdata Emulation
Redisplaying Frames
The Odyssey Viewdata emulation allows you to redisplay the last twelve frames which appeared on the
terminal screen. You can use this feature to check data that has disappeared from your screen, or to save
a particular frame which you accidentally skipped past.

To redisplay a frame just press ALT+F6. The previous frames will be redisplayed, starting with the frame
which just disappeared. The status line will indicate that you are in redisplay mode, and you will have the
opportunity to page backwards and forwards over the recent frames, print them, save them to a picture
file, etc. When you want to leave redisplay mode just press the Esc key.

Odyssey Viewdata Emulation
The Frame Editor
The Odyssey Viewdata module makes it very easy for you to design and send messages in the form of
Viewdata frames. The built in Frame Editor is of the most powerful and easy to use Viewdata editors on
the market, allowing you to design sophisticated frames with a variety of graphics and colors. At the same
time, this section discusses how Viewdata frames are designed and why they are displayed as they are
on your screen.

The Upload Mail function, explained elsewhere, lets you include your edited frame as private mail, or for
public viewing (like the "Gallery" on the UK Prestel system).

Before planning to include graphics in mail messages however, please check whether your Viewdata
service allows it. Some systems do not yet allow graphics in mail messages.

To start the frame editor press ALT+A. You will see an editor frame, which is empty except for the bottom
line. If you use the frame editor in split screen mode then the right hand side of the display will show the
frame editor help screen. If you work in full screen mode then ALT+Z shows the help screen, just like
normal terminal mode.

Editing Text
Editing Frame Blocks
Drawing Boxes
Copying Characters
Special Effects
Loading and Saving a Picture
Leaving the Frame Editor

Odyssey Viewdata Frame Editor
Editing Text
You can edit your frame on 24 lines - Viewdata services use only the first 24 lines of the screen. The 25th
line is used in the frame editor to display information on the frame you are editing, such as the cursor
position and the character under the cursor, or the meaning of the code, if it is a special display mode
character, and whether or not you are currently in insert mode. The frame editor can hold up to three
separate frames at once, and you can move between those frames by pressing the F10 key.

To make a change to a line, simply start typing characters. If you are in insert mode (IN appears on the
status line) then characters from the current cursor location onwards are moved right, and the new
character is inserted - characters moved outside the right margin are lost - the frame editor does not line
wrap. In overtype mode (the default) characters typed replace the character previously under the cursor.
While editing you can use the arrow keys and tab key to move around the frame, PgUp and PgDn take
you to the first and lines lines on the frame, Ctrl+PgUp and Ctrl+PgDn move you to the first or last
character on the display, Home and End to the first and last column, and Enter moves you to the first
column on the next line. You can use Backspace and Delete to delete characters, and the Insert key to
toggle insert/overtype mode.

Unless you include special attribute codes before the text, characters typed will always appear white on
black, in normal height.

You can delete an entire line. To do so, position the cursor on the line to be deleted and press ALT+D. To
erase from the cursor position to the end of the line press Ctrl+End, and to erase from the cursor to the
beginning of the line press Ctrl+Home. To erase the entire display simply move the cursor to the first line
(PgUp), then hold down ALT+D until all lines are erased.

You can insert a new line. To do so, position the cursor where the new line is to appear, and press ALT+I.
All lines from the current line onwards will be moved down, leaving a blank line at the cursor position. The
line moved off the display is lost.

Odyssey Viewdata Frame Editor
Editing Frame Blocks
You can move, copy, save, load, delete and insert frame blocks. This is done by a "cut and paste"
method. To use a block you must first mark it, and then decide what you want to do with it.

Sizing and Marking a block.

Position the cursor on the first character of the block (the upper left corner), then press ALT+M. The
screen will be blanked, the status line will display the cursor position and your options. As you move the
cursor the block will grow, and data corresponding to that block will appear on the screen. The following
keys have an affect while marking a block :

<Arrow keys> - adjust block size
PgUp/PgDn - change block to maximal/minimal height.
Ctrl+PgUp - change block to maximal size, i.e. from the upper left corner of the box to the

bottom right corner of the screen.
Ctrl+PgDn - change block to its minimal size, i.e. one character cell at the upper left corner.
Home/End - change block to maximal/minimal width.

The following keys can only be used if you have an enhanced keyboard:

Alt+Home - Moves the upper left corner of the block to the left margin.
Alt+End - Moves the lower right corner of the block to the right margin.
Alt+PgUp - Moves the upper left corner of the block to the top margin.
Alt+PgDn - Moves the lower right corner of the block to the bottom margin.
Alt+Up - Moves the entire block one line up.
Alt+Down - Moves the entire block one line down.
Alt+Left - Moves the entire block left one column.
Alt+Right - Moves the entire block right one column.

When you have finished marking your block you have three possible options:

· Press Esc to abandon the block operation.
· Press Delete to erase the block as marked.
· Press Enter to accept the block as marked. This causes the block to be copied to an editor

scratchpad.

Pasting a Block.

To paste the block that you have marked, move the cursor to where the upper left corner of the pasted
block should appear, and press ALT+P. The block will appear at that position, however you can still move
it around the screen using the arrow keys. Two types of block paste are possible: Solid and Transparent
paste. The current mode is shown on the status line, and you can toggle between the two using the space
bar. Solid means that the characters in the block will completely replace the characters previously under
the block. Transparent means that only non-space characters in the block replace characters under the
block; where there are spaces in the block the previous characters will remain. Press Esc to abandon the
paste operation, or Enter to complete it.

Saving the block to disk.

You can make your own library of standard pictures or text, save them on disk, and then load them later
to include them in a frame. To save a block to disk you should mark the block, then press ALT+W to save
it to disk. You will be prompted for a name to give to the file.

Reading a block from disk.

To load a previously saved block press ALT+R, and give the name of the block file. The block is read from
the file into the scratchpad (not the screen). To put the block on the screen you should use the paste
operation described above.

Odyssey Viewdata Frame Editor
Drawing Boxes
The frame editor makes it very easy for you to draw boxes. The boxes will be drawn using mosiac
characters. However, in order to display these mosaic characters correctly, you should remember to first
place the proper mosaic attribute correctly on each line where the box will be displayed.

To Draw a Box:

· Place mosaic attributes on all lines where the box will be drawn. You can use the ALT+C key
combination to type the mosaic attribute once and then copy it to the following lines.

· Position the cursor where you want the top left corner of the box to be.

· Press ALT+B to start drawing the box.

A small box will initially be displayed, with the cursor positioned at the bottom right corner. By moving the
cursor with the arrow keys you can adjust the size as required. The following table lists the
keys which can be used for adjusting box size and position:

Arrow keys - adjust box size
PgDn/PgUp - change box to maximal/minimal height.
Ctrl+PgDn - change box to maximal size, ie. from the upper left corner of the box to the

bottom right corner of the screen.
Ctrl+PgUp - change box to its minimal size, ie. one character cell at the upper left corner.
Home/End - change block to minimal/maximal width.

The following keys can only be used if you have an enhanced keyboard:

Alt+Home - Moves the upper left corner of the box to the left margin.
Alt+End - Moves the lower right corner of the box to the right margin.
Alt+PgUp - Moves the upper left corner of the box to the top margin.
Alt+PgDn - Moves the lower right corner of the box to the bottom margin.
Alt+Up - Moves the entire box one line up.
Alt+Down - Moves the entire box one line down.
Alt+Left - Moves the entire box left one column.
Alt+Right - Moves the entire box right one column.

Once you have completed adjusting the box size and position, you have two choices.

· Press Enter to accept the box as it appears.

· Press Esc to cancel the box.

Box Types. While drawing the box you can select any of eight different box types, of various line
thicknesses and line styles (ie. broken and solid). Press the space bar to cycle through the box styles.

Odyssey Viewdata Frame Editor
Copying Characters
If a line on the screen will be similar to the one above it, it is sometimes useful to be able to copy
characters from the line above. You can do that by using the character copy feature. Position the cursor
on the character you wish to copy and press ALT+C. The character under the cursor will be copied to the
same column on the next line. ALT+C is ignored if you position the cursor on the last line. Note that
ALT+C copies the character only, not its attribute. If you wish to preserve the attribute then you also need
to copy the attribute characters which precede the copied character on the line.

Odyssey Viewdata Frame Editor
Special Effects
You can add special effects to a character such as double height, semi-graphics, color etc. If you intend to
use the frame for mailing, be aware that some Viewdata services do not allow graphics in mail frames. To
change the attributes of a character simply insert an attribute character into the line before the character
whose attribute you wish to affect - the help screen shows clearly what keyboard combinations produce
which effects.

Odyssey Viewdata Frame Editor
Loading and Saving a Picture
When you have finished editing a picture, you should remember to save it! To do so you should press
ALT+S. You can load a picture by pressing ALT+L. In either case you will be prompted for a file name,
usinga standard file selector dialog.

Odyssey Viewdata Frame Editor
Leaving the Frame Editor
To leave the frame editor just press ALT+X. A picture loaded into the frame editor is not lost when you
return to terminal mode. The picture will be displayed once more when you re-enter the frame editor.

Odyssey Viewdata Emulation
Uploading Mail
When you wish to send mail you can either type the message directly while online, or you can prepare the
message offline using the Odyssey Viewdata frame editor, then upload the mail in one go.

Sending a frame to a mailbox is very easy and is done by a simple key combination. Before sending a
prepared frame you must first have saved it to disk - you cannot send the frame directly from the frame
editor.

To send a frame you should first make sure that you have selected the correct page on the host service,
then press PgUp. You will be asked for the file name. Odyssey Viewdata supports several mailbox
formats which you can switch between using ALT+M.

Odyssey Viewdata Emulation
Downloading Files
Odyssey Viewdata supports the CET Telesoftware protocol for file downloads. To download software you
must first tell the host software that you wish to download software or data. You will not be able to
download anything if the host doesn't know it is supposed to be sending something at the time!

First, access the Viewdata system. Once you are in the system you must access the telesoftware area.
Then, often after several menus, you must go to the appropriate "page" and indicate the name of the file
you wish to download. Sometimes, only specially registered users are allowed to download files.

Once you have selected a file to download, the Viewdata service will tell you to start downloading the file.
The strange characters you see at the bottom of the screen are actually the first bytes of the file trying to
make their way to your PC - they show that the Viewdata service has started sending the file to you, and
is now waiting for you to start downloading, so you had better do so! - just press PgDn. A download
window will appear on your screen to keep you informed of progress. An alarm will sound when the
download is completed.

Odyssey Help
Glossary
ARC Baud BBS BPS
CCITT Checksum CPS CRC
DCT DIB Download DPI
EIA Escaped LZH MNP
OCR RGB UART Upload
V.23 V.42 YcbCr ZIP

ARC: was originally the format used by the utility of the same name published by System Enhancement
Associates (SEA). This was the de-facto standard BBS archive format for several years, and so you still
find a great many BBS files in this format, even though the ARC format has largely been supplanted by
ZIP etc for new uploads. The SEA ARC utility supported a number of compression methods, starting with
none (ie. file stored with no compression), then run-length encoding, and then several variations on the
Lempel-Ziv-Welsh (LZW) scheme, each later version of the scheme slightly increasing in sophistication
(eg. moving from fixed length codes to variable length codes). Phil Katz of PKWare also produced an
ARC compatible utility called PKARC, and also added a new "Squashed" compression method - another
LZW variant. The Odyssey ARC format reader handles all ARC and PKARC compression methods.

BAUD: One of the properties of a serial connection is the data rate, meaning the speed, in bits per
second, at which data is transmitted. This data rate is commonly referred to as the "baud rate", a term
which is convenient, but technically inaccurate. However, to avoid confusion, we adopt that misnomer
throughout this help system. When we say that data is transferred at "2400 baud", we really mean that
data is transferred at 2400 bits per second (bps).

BBS: Short for Bulletin Board System. An electronic meeting place for modem users, a BBS is generally
a small system run by an individual, with basic facilities for public and private text messages, and file
transfer.

BPS: Bits Per Second. A unit of measurement used when recording how quickly data is being transferred,
eg. by a modem or serial link. The word baud is usually, and incorrectly, used as a synonym for bps.

CCITT: Consultative Committee on International Telegraphy and Telephony. A body responsible for the
development and promotion of standards related to the communications field. Recently absorbed into the
ITU.

A checksum is used when a device has data to send, and wants to ensure that it reaches the destination
undamaged. It does this by forming the data into packets, and then adding a checksum to each packet,
where the checksum is simply the sum of the values of all the data bytes in the packet. The receiver
recalculates the sum and compares the result to the checksum received with the data. If the two values
do not match then the data packet must have been corrupted. A checksum is simple to carry out, but
considerable less reliable than CRC checking.

CPS: Characters Per Second. A unit of measurement used when recording how quickly data is being
transferred, eg. using a file transfer protocol.

CRC is an acronym for Cyclic Reduncancy Check. It is similar to a checksum in that it is used to check
the integrity of a block of data. Roughly speaking, it involves forming all the data in the block into one
huge number, and dividing that huge number by a smaller value (the CRC polynomial). The remainder
after the division is the CRC. Typically a sending process (such as a file transfer protocol) will calculate
the CRC on a block of data, and then send the CRC along with the data. The receiving process
recalculates the CRC on the block of data it has received, and if the receivers calculated CRC matches
the one received with the data packet then the chances are very good that the packet contains no
transmission errors (with a sixteen bit CRC that means less than one chance in 65000 of arriving at the
right CRC by accident).

DCT is an acronym for Discrete Cosine Transform, a real-function relative of the Fourier Transform. The
DCT is primarly used in image compression (such as in JPEG). In fact, the DCT does not compress an
image directly, but instead transforms the image data into a format which is easier to compress in a lossy
fashion. Eg. the DCT converts pixel data into a "rate of change" function, which is then quantized (scaled
down by a constant, losing a little precision). This results in many frequency components having a zero
coefficient, which lends itself well to compression using run length or Huffman encoding.

DIB: Device Independant Bitmap, a portable bitmap format invented by Microsoft. When saved to disk a
descriptive header is attached and the result is a Windows BMP file. There are also run length encoded
variants of this file format, called RLE files.

DPI: Dots Per Inch, a measurement of image resolution.

EIA: Electronic Industries Association. Yet another of the plethora of standards bodies involved in
devising standards for various aspects of communications. Our main interest in the EIA is that it is they
who were originally responsible for the FAX-modem interface standards, Class I and II.

Escaped: A file transfer protocol sometimes needs to "escape" certain characters which occur in the file,
which means to replace the special characters with a code which is harmless. For example, suppose you
were transferring data to a host which treated ^Z as an instruction to disconnect the line - you obviously
would not want that character to occur in the file data! The solution is normally to replace any occurrences
of ^Z in the data with something like <character>Z, where <character> is called the "escape code" (ASCII
16, or DLE is often used for this). The receiver sees the escape code and so knows to replace whatever
character follows with the control code equivalent, so Z becomes ^Z. Of course, this makes DLE itself a
sensitive character, so it also must be escaped.

LZH: an archiving format used by the LHARC (later called LHA) utility, LZH has attained a respectable
following among BBS users. Initially this was because, while LHARC was significantly slower at
compression than PKZIP a) decompression wasn't much slower, b) compression ratios were higher, c)
LHARC was free, d) the source was also available for free, which made it easy to port the format to non-
DOS platforms. LHARC also had the ability to create self extracting archives with surprisingly little file size
overhead. Subsequent PKZIP versions pretty much matched LHA on compression ratio, though the other
attractions of LHA remained.

MNP: Microcom Network Protocol. This was the de-facto standard error correction protocol used in
modems prior to the introduction of V.42bis. Several MNP flavours (or classes) are in common use, the
most important being MNP5, which includes data compression. Odyssey supports MNP5 in software.

OCR: Optical Character Recognition. An algorithm or software package which is used to recognise and
extract text from a document stored in image form - eg. a FAX, or an article scanned from a magazine.
This kind of pattern recognition is incredibly difficult for a computer to do, and current OCR packages are
still quite primitive - their output usually needs to be hand edited by a human being to bring it up to
acceptable accuracy. The difference between a good and a bad OCR is how much editing is left to the
user.

RGB (Red-Green-Blue) is the most popular system for specifying color on a computer graphics display.
RGB controls color by describing the intensities of the three primaries which should be added to produce
the desired color. In theory each primary would range between 0 and 1, with 0,0,0 specifying black, and
1,1,1 specifying white. 0.5,0.5,0.5 would be a mid-intensity gray, 1,0,0 would be a high intensity pure red,
etc. In actual fact, most PC implementations scale each component into an integer range, such as the 0-
255 range used in Microsoft Windows.

UART: Universal Asynchronous Receiver/Transmitter. The UART is the chip inside your personal
computer which is responsible for sending and receiving bytes via your serial ports. For example, when
sending data your computers CPU passes a byte to the UART, which then transfers the bits in that byte
one at a time out through the serial port transmit wire. The UART used in the original PC was the National
Semiconductor 8250, which could handle speeds up to 9600, provided your PC wasn't doing too much
else. Later PCs and ATs used the 16450 UART, which was somewhat faster, and could handle speeds of
19200 or 38400, again depending on how busy your PC was. The best equipped PCs now use the
16550AFN, which can handle much higher speeds (up to 115200 bps in many cases), which it manages
by providing extra on-chip buffering.

UPLOAD/DOWNLOAD: are standard jargon terms for, respectively, sending and receiving data (file
transfer). The jargon words are instead instead of words such as send because the latter is ambiguous,
since the direction of the transfer depends on whose point of view is implied, ie. does send mean "send
from the host", or "send to the host"? The Upload/Download terms are always used from your point of
view (the local machine), ie. Upload always means "send from the local machine to the remote host". This
point of view is maintained regardless of whether it is the host machine or Odyssey which is offering you
the chance to upload (or download).

V.23: A CCITT standard for modems which transmit at 1200 bps in one direction, and 75 bps in the other,
used mostly by European telephone authorities for providing various database services. Designed when
300 bps was the most common speed for personal-use modems, it provided a cheap way to allow callers
to read data at 1200 bps, without requiring a much greater bandwidth than a 300 bps modem did. V.23
was already obsolete when it was introduced, but you can still find services which require it. V.23 never
took off in the US, which at that time was still using Bell standards for 300 and 1200 bps modems.

V.42 is the ITU (formerly called CCITT) standard for error correction. An important extension to V.42 is
V.42bis, which provides data compression superior in performance to that found in MNP5 (though it never
gets the 4:1 performance typically claimed by modem manufacturers).

YCbCr is an system for specifying color, an alternative to the RGB model. YCbCr is quite similar to
system like YUV, used in color television. The idea is to specify the color in terms of Y - the intensity or
grayscale value - plus the blue and red chrominance values. In television this has the advantage that a
black and white TV receiver simply ignores the Cb and Cr components, while a color set uses all three
components. If RGB was used by color television then a separate grayscale channel would need to be
transmitted for the benefit of black and white sets.

Also, the human eye is very much more sensitive to the intensity (Y) component than it is to the color
components. This is taken advantage of in certain computer graphics file formats, such as JPEG/JFIF,
which usually stores the color chrominance components using a lower precision (fewer bits), thus saving
space.

ZIP: this is the current de-facto standard BBS archive format. ZIP improves on ARC/PKARC by providing
faster decompression, better compression ratios, and the ability to store complete directory trees in the
archive, instead of the simple list of unqualified file names used by ARC. Although ZIP supports a number
of different compression methods, the most important algorithms are derived from the "Sliding Dictionary"
Lempel-Ziv schemes (ie. where a string which has previously occurred in the file is replaced by a code
telling the reader the position and length of the previous occurrence). ZIP also uses a secondary static
Huffman encoding to further compress the character, length and position codes. Later ZIP algorithms find
efficient ways to handle large (32k) dictionary sizes.

Odyssey Script Language
Script Tutorial
You may read the Odyssey Script Tutorial by selecting from the list of topics below, or you can select the
first topic, and then use the WinHelp "browse buttons" to step between topics.

Introduction to Syntax
Words
Strings
Numbers
Punctuation Characters
Comments
Script Syntax Definitions
Keywords and Naming
Overall Script Structure
Types and Variables
Note on String Variables
Expressions
More Complex Expressions
Operator Precedence
Long data type
Decision Statements
More Advanced Decision Statements
Looping Statements
Constant declarations
Commands (Procedures)
Commands (Functions)
Include files
Conditional compilation

Odyssey Script Tutorial
Introduction to Syntax
Odyssey Script in most respects resembles a traditional computer programming language. As such, and
in common with most languages, it is formed from words, and has a specific grammar whose rules much
be followed in order to compose a correct sentence. Unlike most spoken languages however, the
grammar of a programming language is normally much simpler and more rigidly defined. This is
necessary, since technology has not yet advanced to the stage where it is possible to specify computer
programs using human language (and it isn't entirely clear that it would even be desirable).

When describing a human language, it is normal to refer to words, sentences and grammar. In computer
languages those same features are normally called symbols, statements, and syntax.

When you tell Odyssey to run a script, it first loads the text file containing that script into memory, and
then it checks the script for errors. In order to do this it scans the file, extracting symbols one at a time,
forming those symbols into a sentence (statement),and then validates the newly formed statement using
its knowledge of the rules of grammar (syntax). If the statement correctly conforms to the syntax rules
then the script checker will continue with the next statement, otherwise an error message describing the
nature of the error will be issued and the checking will stop.

The script language is designed to make it as easy as possible for the syntax checker to extract symbols
from the source file. For example, a symbol is never made up of more than one word, unless it is
surrounded by quotes. Also, a symbol never starts with a digit unless the entire symbol is a number. A
symbol can contain digits and not be a number, but that symbol cannot start with a digit. In most cases,
symbols are separated from other symbols by punctuation marks, spaces or line ends. In some
languages a newline is used to terminate statements, but in Odyssey script language a semicolon is used
for that purpose, while a newline is treated like a space. This gives you the freedom to format sentences
as you like, without reference to the number of lines the sentence occupies - you can place several
statements on one line, or spread one statement over several lines. The number of spaces between
symbols is not important, provided that (where necessary) there is at least one.

Where necessary means, where there would otherwise be ambiguity. If a script contained
HELLOTHERE, this would be seen as a single symbol. If you wanted it to treated as two then you would
have to insert a space. On the other hand HELLO,THERE would be treated as three symbols - <HELLO>
<COMMA> <THERE>, since names cannot contain commas. There is no ambiguity here, so spaces are
not required, although you can still insert them if you wish.

The process of comparing the symbols of a program text against a defined syntax is called PARSING.
After it has been checked by the parser, Odyssey converts the script into a coded form, which is much
easier and faster for it to manipulate during execution. The entire process of starting from the human
readable text, parsing, and translating into a machine readable executable form is called COMPILING. In
Odyssey, scripts are normally compiled each time they are loaded. However with large scripts this might
be considered wasteful, and so you are provided with the Command|Compile script... menu option,
which is able to compile a script and store it on disk in precompiled form. Odyssey can run such scripts
immediately after loading them, and does not need to compile them again. You can also compile scripts
you have loaded into an Odyssey text editor by pressing F9 when the editor window is active.

It was mentioned in a previous paragraph that the parser breaks the input text file into symbols. The basic
symbol types that the script language knows about are words, strings, numbers and punctuation
characters. These are described in the following following topics (use the browse buttons above to step
between topics).

Odyssey Script Tutorial
Words
WORDs are script language symbols which start with a letter, and then contain a mixture of letters, digits,
or the underscore character. For example:-

HELLO ABC123 HELLO_AGAIN

TODAYS DATE cannot be treated as a single symbol because it uses an illegal character, a space. The
syntax checker would in fact see this as two separate symbols. Words are used in the script language to
describe operations, and also to name variables and other objects. Some words are known to the parser
before checking starts, while others are defined within the script. The script language does not
differentiate words by case, ie. HELLO, Hello and hello are all regarded as identical, and refer to the
same object. The script language treats all characters in a word as significant (this differs from previous
Odyssey versions, in which only the first ten characters of different symbols needed to be unique).

Odyssey Script Tutorial
Strings
A string is a series of characters which begins and ends in either single or double quotes. The string must
use the same type of quote at both ends. This string is then treated as a single entity, even when it
includes spaces. These are all examples of valid strings:-

"Hello, World"
'Hello, World'
'The boss said "hello" to me today'
"I prefer Mike's car to my own"

These are not considered to be valid string symbols:-

"The boss said "hello" to me today"
'I prefer Mike's car to my own'
"Hello,
World"

The first two strings are incorrect because they contain quote marks embedded in the string which are the
same as those used to mark beginning and end of the string. When the checker examines the first string it
would take "The boss said ", hello, and " to me today" to be separate symbols. A string can contain
double quotes only if it is itself surrounded by single quotes, and vice versa. The third string is incorrect
because it is on two lines. This is a language limitation - the entire string must be on one line.

Odyssey Script Tutorial
Numbers
A number is a sequence of one or more digits, forming a decimal or (ie. base ten) or hexadecimal (ie.
base sixteen) value. For example, these are some decimal numbers:-

123
0123
1

The script language allows the use of hexadecimal numbers if you prefix the number with a dollar sign.
The letters 'A' to 'F' are then used to indicate single digit values between ten decimal and fifteen decimal.
For example:-

$123
$0123
$AB23
$23ab

are all valid hexadecimal numbers. Note: hexadecimal is often written in abbreviated form as "hex".

Odyssey Script Tutorial
Punctuation Characters
These are characters such as brackets, semicolon, colon etc., and are used to separate or group
symbols, or as arithmetic operators. There are a large number of punctuation characters, and these will
be described in later sections of this chapter.

Odyssey Script Tutorial
Comments
The script language allows the insertion of comments into the program text. When the parser finds the
start of a comment it simply skips characters until it finds the end, and then extracts the symbol (if any)
which follows. The entire comment is treated as if it were a single space. The language supports three
comment styles, the use of which is entirely a matter of preference. Here are examples:-

SCRIPT myscript;
BEGIN

Dial("MICROP"); -- start dialing
IF WaitFor("User name?",10) THEN

(* ok, we appear to be logged on *)
Transmit("John Smith|"); -- send my name
WaitFor("Password:");
Transmit("smithy|"); -- send my password

END;
END /* of script */;

The above script uses all three comment styles, as described below:-

Anything on a line following a "--" is a comment, and is ignored. The comment is terminated by the end of
line. This is the only example in the Odyssey script language in which the end of a line affects syntax.

Pascal style comments start with (* and end with *). These symbols, plus everything in between, are
discarded. This style of comment can be spread over multiple lines.

C style comments use the symbols /* and */, but are otherwise identical to Pascal style comments.

The script language allows comments to be nested, so it is possible to comment out a section of script
which itself contains comments, without the parser becoming confused.

Beware of opening comments without closing them, as this will cause the parser to skip the remainder of
the file. If Odyssey gives you an "Unexpected End of File" error when parsing a script then it is almost
certainly due to an unclosed comment.

Unlike interpreted languages such as Basic, there is no penalty for inserting comments into an
Odyssey script, since comments do not increase the size of the compiled program and thus reduce the
memory available for executable code. Comments have no effect one way or the other on the code
generated by the script compiler. However, do not feel that this means that you should supply great
volumes of comments. Over commenting is as much a sin as under commenting.

Odyssey Script Tutorial
Script Syntax Definitions
The remaining topics of this help chapter will go into detail about each important aspect of the script
language. In order to focus the discussion a simple skeleton structure will often be used to explain the
syntax accepted by the compiler for a particular statement type. Where a symbol is intended to be literal
(ie. will appear exactly as shown in your script) then it will be shown in bold upper case, otherwise a non-
literal symbol will be lower case and enclosed in angle brackets, to show that this will be expanded into
literal form by the programmer. For example, here is a definition of a script "while" looping statement:-

WHILE <logical expression> DO
<statement sequence>

END ;
In this example the WHILE, DO and END symbols should literally appear as shown in your script,
whereas <logical expression> and <statement sequence> stand for any suitable operation matching that
symbol. The meaning of those symbols is discussed elsewhere in this chapter.

Odyssey Script Tutorial
Keywords and Naming
The section Introduction to Syntax described how the script parser recognises symbols in four basic
classes - words, numbers, strings and punctuation marks. However, the parser really does more than
that, because it differentiates between words which belong to the language, and those which belong to
the person writing the script, for example, when used to name variables.

Words which are belong to the language are called KEYWORDS and are reserved, meaning that you
cannot reuse such a word as a name for another object. Some programming languages do not employ
the concept of reserved words, and instead interpret the word differently depending upon the context in
which it is used. This may sound rather convenient, but in fact it simply leads to silly tricks which make life
very confusing for programmer and parser alike, as the following example will show:-

IF THEN<ELSE THEN
IF:=THEN

ELSE IF THEN>ELSE THEN
IF:=ELSE

ELSE
IF:=END

END

This sort of trick is not only silly, the fact that it is allowed makes it very hard for the parser to detect errors
quickly, or to accurately detect the nature of an error. The use of reserved keywords avoids this problem
entirely, and makes it possible for the parser to detect an error at the first incorrect symbol, for example:-

IF a< THEN
a := 2

ELSE
a := 1

END;

The above statement has an error, in that the expression is incomplete (the term which should follow the
less-than symbol '<' is missing). The Odyssey script parser will spot this error as soon as it sees the
"THEN" symbol, because it knows that THEN is a keyword which cannot possibly be a term in an
expression.

The following table lists all of the reserved words in Odyssey script language.

AND ELSIF IF PROC THEN
BEGIN END NOT REPEAT UNTIL
CASE FILE LONG NUMBER RETURN
VAR DO FLAG OF SCRIPT
WHILE ELSE FUNC OR STRING

In addition, the names of built in commands, and certain symbols used in conjunction with those
commands (such as the names of file transfer protocols, parity types etc) may not be used to name your
own objects. These predefined names can be found along with the description of the command which
uses them. The script parser will point out any attempt to reuse a name.

Odyssey Script Tutorial
Overall Script Structure
Every text conforming to Odyssey Script Language syntax has an overall structure as follows:-

SCRIPT <name>;
<Optional: Variable and Procedure Declarations>

BEGIN
<statement sequence>

END;
So, following the above definition, here is an example of the smallest script that will be accepted by
Odyssey.

script smallest;
begin
end;

Naturally, since there are no commands, this script does nothing except exit immediately. Notice that we
used lower case for the keywords in this example. This highlights a point mentioned earlier, which is that
use of upper or lower case is entirely a matter of preference. Having made that point we will from now on
return to using upper case, because that does make the use of keywords more obvious.

Now suppose we wanted to make the script display "Hello, World!" on the screen. Commands go
between the BEGIN and END symbols, and so the necessary script would be:-

SCRIPT hello;
BEGIN

Write("Hello, World!");
END;

also, if we wanted to declare a variable, you can see by the definition that it should go before the begin,
like so:-

SCRIPT hello2;

VAR my_variable : Number;

BEGIN
Write("Hello, World!");

END;

Finally, if we want to define a procedure, then it also goes before the main BEGIN, as in:-

SCRIPT hello3;

VAR my_variable : Number;

/*..*/

PROC My_Procedure();
BEGIN

Write("Hello, World!");
END;

/*..*/

BEGIN
My_Procedure();

END;

The /*... lines are simply comments, inserted to make the user defined procedure stand out a little better.
The main BEGIN - END body of the script now makes a call to our procedure, which just displays "Hello,
World!" as before.

By now you will be panicing, because I have suddenly introduced variables and user procedures. Don't
worry, you are not intended to understand that now, the intent here is simply to let you see what a script
looks like as it grows. "Write" is a built in command which you may have met in the Creating your first
Script by hand section - this and all the other commands are documented later in the chapter.

The last example declared a variable and a procedure, yet the definition at the beginning of the section
did not mention the order that they should be in - do variables have to come before procedures? The
answer is no, you can mix procedure and variable definitions in any order you like, provided that they all
come before the main BEGIN in the script, and provided that they are not used before they are defined.
Most scripts in this help chapter will however group variables at the beginning of the script, to make them
easier to find.

Odyssey Script Tutorial
Types and Variables
In previous sections you saw how the script checker recognises symbols as either words, numbers,
strings or punctuation. Later on you were told that certain words are treated specially, in that they are
reserved by the language for use as keywords. Now it is time to learn something else about words, which
is that the checker also associates, with each word, a particular TYPE (expressions and functions also
have types, but we will return to that later). These are the different word types that the checker
recognises:-

KEY WORDS: The word is a reserved word used by the language (you have already met these).
NUMBER: The word is the name of a number variable with a range -32768 to 32767 (a sixteen bit

signed integer).
LONG: The word is the name of a number variable with a range of 0 to 4294967295 (a thirty-two

bit unsigned integer).
FILE: The word is the name of a file variable
FLAG: The word is the name of a true/false logic variable.
STRING: The word is the name of a string variable.
PROC: The word is the name of a built in or user defined procedure.
FUNC: The word is the name of a built in or user defined function. Functions also have a

secondary type of Number, File, Flag or String which allows the word to be used as if it
was a variable.

We will return to the subject of procedures and functions later. For now we will look at the definition of
variables.

The checker knows the type of a variable because you tell it what the type is when you define the
variable. Here is the format of a variable definition:-

VAR <list of names> : <type> ;
<optional: another list of names> : <type> ;

Where <type> can be either NUMBER, LONG, FILE, FLAG or STRING. The optional line can be
repeated as many times as you like. For example, the following lines define two number variables called A
and B, two string variables C and D, two file variables E and F, and two long number variables G and H :-

VAR a,b : Number;
c,d : String;
e,f : File;
g,h : Long;

You declare variables because you want to be able to store and then manipulate data for some part of the
lifetime of a script (ie. while it is running). The variables are given types so that the checker can spot when
you try to do something silly, like adding a file variable to a number variable. The following is a short script
which takes two numbers and adds them together, then displays the result:-

SCRIPT Add;

VAR a,b,c : Number;

BEGIN
a := 1234;
b := 4321;

c := a + b;
Write("A plus B equals - ");

Write(c);
END;

The above script was written for clarity, not necessarily because that was the best way to do it. In fact,
there is no reason to have the variable C, since we don't need to store the sum, only display it. Also, we
don't need two separate Write() commands, because a single Write() command can display more than
one item if we separate the items with a comma, so here is a second attempt at that script:-

SCRIPT Add;

VAR a,b : Number;

BEGIN
a := 1234;
b := 4321;

Write("A plus B equals - ", a+b, "|");
END;

Note that we have added a "|" symbol in the list of items for the Write command. This tells the script
processor to move the cursor to the next line after it has displayed the first two items.

We can do a similar thing with string variables, that is, take two string variables, add them together and
display the result:-

SCRIPT String_Add;

VAR c,d : String;

BEGIN
c := "Hello ";
d := "World!";

Write(c+d, "|");
END;

If you run this script it will display "Hello World!" on the screen. The script language allows you to add
numbers and strings (addition of strings is called "concatenation"), but there is no sensible way to add
FILE and FLAG variables. You use these types of variables for other things - File variables are used when
you want to access a DOS text file on disk, and a command is provided which allows you to associate a
file variable with a physical file:-

SCRIPT Open_Close;

(* open a file and then close it again *)

VAR f : File;

BEGIN
Fopen(f, "TESTFILE.TXT");
Fclose(f);

END;

The file variable is simply used as a "handle", i.e. a convenient way to refer to an actual file, without
having to type the file name every time.

Flag variables are used to record TRUE/FALSE values, usually the result of an earlier test your script did,
and they are also used in loops. You will meet a lot of these later.

Odyssey Script Tutorial
Note on String Variables
One problem with defining a lot of string variables is that strings take up a lot of memory, and memory is
not an unlimited resource for a script. The amount of memory occupied by a string therefore has to be
limited in some way. In the Odyssey script language strings are normally allocated enough memory to
store eighty characters. Note that this memory is allocated to the string when it is defined, before any
value is assigned to it, and therefore means in some cases a waste of memory, because you may not
need to store that many characters in that particular string variable.

On the other hand, sometimes eighty characters is not enough. For example, when you are writing a
script to read lines from a text file and paste those lines to a BBS, you naturally want the script to be able
to handle lines of any reasonable length, and some may quite easily be longer than the default eighty
character maximum length of a string variable.

The way to get round this is to use a STRING LENGTH OVERRIDE in order to give the compiler a "hint"
as to how much memory it should allocate to a particular string variable. You do this by including the size
you need in square brackets after the string definition. The exact syntax for
a string variable declaration is :-

<var_list> : STRING ;
or :-

<var_list> : STRING [<integer constant expression>] ;

For example:-

VAR s1,s2 : String[20];
s3 : String;
s4 : String[255];

In the above example, strings "s1" and "s2" are each allocated enough memory to hold a twenty character
string, so here we are saving memory by allocating less than the default. String "s3" did not use an
override, and so it gets the default memory allocation, enough for an eighty character string. String "s4"
needs more memory than the default, and so the override is used to allocate enough for a 255 character
string. Judicious use of string overrides should allow you to make more efficient use of memory by
reducing allocated space when you don't need it, and allocating more in specific instances when you do.

If you try to assign a long string to a shorter one, then the string will be truncated. For example:-

VAR s1 : String[10];
s2 : String[20];

BEGIN
s1 := "Hello, World!!"; -- string truncated

s2 := "Hello, World!!";
s1 := s2; -- string truncated
....

If you count the characters between the quotes in the above examples you will see that there are fourteen
characters. Yet string "s1" has been declared with a maximum length of ten characters, so it obviously
cannot hold the whole string. This will not cause an error, it simply means that only the first ten characters
will be assigned. In the second attempt, the string literal was initially assigned to a longer string variable,
and then an attempt was made to assign it to the shorter variable again. This makes no difference. The
string is still too long and will be truncated at ten characters. Notice that the fact that "s2" is declared as
being longer than "s1" is not the cause of this problem. It is simply that the actual string being assigned is

in this case too long for the destination variable.

Odyssey will not allow strings larger than 255 characters, even if you try to allocate more using a string
override.

Odyssey Script Tutorial
Expressions
Expressions are the driving force in any script, and as such is a complex subject which requires careful
explanation, and just as careful reading. Understanding of expressions is vital in order to progress to a
fuller understanding of programming using the Odyssey Script Language.

An expression defines a calculation for the script processor to evaluate. A calculation need not be numeric
- string and logical operations are also supported. The script processor evaluates the expression and
produces two items of information, a "value" which is the result of the evaluation, and the "type" of that
result.

For example; if you add two numbers, then the value is the resulting sum, and the type is a number, just
as the terms were. Here are some sample expressions, with the evaluated result and type shown for each
case:-

Expression Expression Expression
Result Type

2 + 2 4 Number
"Hello "+"World" "Hello World" String
TRUE OR FALSE TRUE Logical
2 = 4 FALSE Logical
2 < 4 TRUE Logical
NOT (2 < 4) FALSE Logical
"ABC" < "ABD" TRUE Logical
2 AND 2 2 Number
1 OR 2 3 Number
2 2 Number
Long(2) 2 Long
1234567 1234567 Long
Number(1234567) -10617 Number

Expressions only really become interesting when you use variable names instead of constants, and when
you use the expression for some useful purpose, perhaps by storing the result in another variable:-

VAR a,b,c : Number;

BEGIN
a := 2;
b := 2;
c := a+b;

This above sequence demonstrates several uses of an ASSIGNMENT STATEMENT, meaning that a
value is assigned to a variable. Assignment statements have the following definition:-

<variable name> := <expression> ;

When the script processor sees an assignment statement it evaluates the expression, confirms that the
type of the result matches the type of the variable, and assigns the value of the expression to the variable
if so.

We now need to know more about what an expression is. Here is the definition. An expression is either:-

<term>

or: <term> <operator> <term>

or: NOT <term>

In this discussion of expressions, the word "term" is used to mean the same as the word "operand", with
which some of you may be more familiar. Operand simply means an object which is the subject of an
operation, in this case an arithmetical or logical operation. The word "term" is used because it is slightly
less distracting than the more obscure "operand".

In the three examples of "assignments" given above, the first two showed examples of the simplest form
of expression, consisting of a single term, with no operation, ie. :-

a := 2 ;
b := 2 ;

note that in both these cases, the expression part is the "2". The remainder of the line forms the syntax of
an assignment. The third assignment gave a sample of the second definition of an expression, using an
operator and second term:-

c := a + b;

So in this example the terms are "a" and "b" and the operator was "+", the addition operator. Addition is
not the only operation allowed in the script language, the following paragraphs describe them all.

a + b (Addition)

Add A and B. Terms A and B must be either both be numbers or both be string types. Addition of strings
produces a concatenation.

a - b (Subtraction)

Subtract B from A. A and B must be numeric types.

a * b (Multiplication)

Multiply A and B, both of which must be numeric.

a / b (Division)

Divide A by B. Both terms must have numeric types.

a % b (Modulus)

The remainder after dividing A by B. Both terms must have numeric types.

a OR b (Logical OR)

IF A or B is true, then the expression is true, else the expression is false. A and B must be logical (flag)
types.

a OR b (Bitwise OR)

The bitwise OR of A and B, which are both numeric. A bitwise OR produces a result in which bits which
are 1 in either A or B are also 1 in the result.

a AND b (Logical AND)

IF A and B are both true, then the expression is also true, else it is false. A and B must both be logical
(flag) types.

a AND b (Bitwise AND)

The bitwise AND of A and B, which are both numeric. A bitwise AND produces a result in which the 1 bits
in A which are common to B are set to 1 in the result.

a = b (Equality)

If A is equal to B then the expression is true, else it is false. A and B can be of any type, but both must be
of the same type.

a <> b (Inequality)

If A is not equal to B then the expression is true, else it is false. A and B can be of any type, but both must
be of the same type.

a < b (Less than)

If A is less than B then the expression is true, else it is false. A and B must be both numeric or both string
types.

a <= b (Less than or Equal)

If A is less than or equal to B then the expression is true, else it is false. A and B must have numeric or
string types.

a > b (Greater than)

If A is greater than B then the expression is true, else it is false. A and B must be numeric or string types.

a >= b (Greater than or Equal)

If A is greater than or equal to B, then the expression is true, else it is false. A and B must be numeric or
string types.

NOT a (Logical Inverse)

A must be of a logical type. If A is TRUE then the expression is false, else it is true.

NOT a (Bitwise Inverse)

A must be of a numeric type. The value of each bit in A is inverted in the result.

The important point to note about any expression is that the terms must be compatible, ie. they
must be of the same type.

Odyssey Script Tutorial
More Complex Expressions
You may be wondering how you handle more complex expressions, that is, with more terms. Well, you will
see how that is handled when you discover that a term in an expression may, if you wish, also be an
expression in its own right. And so you can have compound expressions such as:-

Notice how the overall expression fits the definition, and how each term, which is also in fact an
expression in its own right, also fits. Here are further examples of compound expressions:-

a := b*c + d*e;

a := b + c * d;

x := (a OR b) AND (c OR d)

and this is not as far as it can go. Each of the terms in a compound expression can also be an
expression, and so on ad infinitum. A function call can also be a term in an expression, but we will return
to that later, once functions have been properly discussed.

Odyssey Script Tutorial
Operator Precedence
Take a look at the following two expressions:-

x := 2 * 4 + 6 ;

y := 6 + 2 * 4 ;

Your puzzle for today - what are the values of x and y? Easy, you might say, and give the correct answer,
which is 14 in both cases. If you got 20 for x, or 32 for y, then you have forgotten a lesson from
mathematics class at school, which is that some operations always take precedence over others,
regardless of where they appear in the expression. In the above examples, you must always perform the
multiplication first, since multiplication has higher precedence than addition. Precedence rules are a
natural consequence (and complication) of the Western convention of infix expression notations (postfix
or "reverse Polish" notations do not require precedence rules).

You can override operator precedence by using parentheses, as follows:-

y := (6 + 2) * 4;

Now y does indeed equal 32, because subexpressions in parentheses have a higher precedence than
multiplication. The following is a description of the different orders of precedence in the Odyssey script
language. Level 1 has the highest priority, while level 5 has the least:-

1. Subexpressions in parenthesis.
2. The NOT operator.
3. Multiplication, division, modulus, and (*,/,%,AND).
4. Addition, subtraction, or (+, -, OR).
5. Relational operators (=, <=, <> etc).

Now look at the following expression:-

a := 6 + 2 - 4;

According to the precedence rules given above, addition and subtraction have equal priority, so we could
choose to evaluate either subexpresson first (6+2 or 2-4). In mathematics this is not a problem, because
the answer is the same (4), regardless of the order in which we do the calculation. In computer languages
however, some or all of the terms may be function calls, e.g.:-

a := b + c - FuncCall(4);

Now suppose that the function "FuncCall" has a SIDE EFFECT, which is that it modifies the value of "b".
Now it becomes very important to know in what order the expression is evaluated, since if "c - FuncCall"
is evaluated first, b may have a different value than if "b + c" were evaluated first.

Odyssey script language makes an arbitrary decision to cope with this problem, which is that
subexpressions of equal priority are evaluated from left to right, in other words in the previous example,
"b+c" would be evaluated first.

Odyssey Script Tutorial
Long data type
Sharp eyes may have noticed a data type of Long being used in examples given previously. This is a 32
bit unsigned long integer quantity. Longs and numbers (16 bit signed integers) may be mixed in an
expression, in which case the integers will be promoted to longs in order to evaluate the expression. One
must be careful however to understand exactly when an implicit type promotion will occur. For example :-

VAR a:Number;
b,c:Long;

Begin
c := a*b;

Multiplying a number (a) by a long (b) is fine, because a is automatically promoted to type long. The
following however would be wrong :-

VAR a:Number;
b,c:Long;

Begin
a := 1234;
b := a * a;

c := 1234 * 2345;

The values assigned to 'b' and 'c' above are wrong in both cases because the expression on the right
hand side is completely evaluated before the result is promoted to a long and assigned to the long
variable on the left. In both cases the result (prior to promotion) is an integer, and in both cases that result
overflowed (eg. 1234 * 2345 = 2893730 - far too big a number for a 16 bit signed integer result to hold).

This one is slightly more subtle :-

VAR a:Number;
b,c:Long;

Begin
a := 1234;
b := 3456;

c := b + a * a; /* note this line */

You might think that since the expression on the right hand side contains a long that the result would be
promoted to long (correct), and therefore it will not overflow (wrong!). The problem is the order of
evaluation within an expression - multiplications have a higher priority than addition, and in the case of the
expression shown above, this means that (a*a) is evaluated first, and since a is an integer, the sub-
expression result is also an integer, and thus overflows. The remainder of this overflow is promoted to
long and added to 'b', and the final result is assigned to 'c'. That result will of course be completely wrong.

In case of doubt, you can avoid these type promotion problems by using explicit "type conversion" to
promote a number to a long. The following examples all produce the correct result :-

VAR a:Number;
b,c:Long;

Begin
a := 1234;
b := Long(a) * a;
c := b + Long(a) * a;

You could have explicity promoted every occurrence of 'a', but that isn't really necessary, since in an
expression like "Long(a) * a" the second a is implicitly promoted in order to perform the multiplication.

You can also demote a long using the type conversion function 'Number', eg:-

a := Number(c);

which yields the lower sixteen bits of the long variable c.

A literal integer constant (such as the '1234' term used in the examples above) is always
assumed to be of type 'Number', if it is small enough to fit in sixteen bits. You must explicitly promote it to
long (eg. using Long(1234) if you want to override this behaviour).

Odyssey Script Tutorial
Decision Statements
The basics of Odyssey script language have now been dealt with, and it is time to start learning how to
put it all together to form complete scripts. One of the things you need to learn is how to control the flow of
execution in your script, that is, how to control when a given sequence of commands is executed, and
when it is not.

One way to handle flow of control is by means of decision statements, of which the simplest is the IF
STATEMENT. A basic IF statement has the following form:-

IF <logical expression> THEN
<statement sequence>

END;
If you read the previous section on expressions then you will know that a <logical expression> means
an expression which evaluates to either TRUE or FALSE. If the expression evaluates to TRUE then the
<statement sequence> is executed, otherwise it is not. The purpose of the END is to mark the end of the
sequence of statements which is dependent on the result of the test. If the above expression evaluated to
FALSE then the flow of control would move directly to the statement following the END, without executing
any of the commands in <statement sequence>. The following is an example of the use of the above form
of IF statement:-

IF Dial("MICROP") THEN
WaitFor("User name?");
Transmit("John Smith|");

END;

which is the same example you may have discovered in the section on "Creating your first Script by
hand". The thing that was not mentioned in the earlier section is that Dial() is a built in function which
produces a logical result (i.e. it returns either TRUE or FALSE depending on whether the dial attempt
succeeded), hence it can be used directly as a condition in a decision statement, as is shown above.

The logical condition in a decision statement can also be made a compound expression, by linking
smaller logical expressions with logical operators, e.g.:-

IF Dial("MICROP") AND OnLine() THEN
WaitFor("User name?");
Transmit("John Smith|");

END;

where OnLine() is another built in function returning a logical result. The above statement means that IF
the dial attempt was successful, AND the carrier is still high, then the script processor should execute the
two dependant commands, otherwise it should not.

Sometimes you want the script to select one of two sequences, depending on the result of the condition.
This is handled by making use of an optional ELSE clause in the IF statement. Here is the definition of an
IF statement using an ELSE clause:-

IF <logical expression> THEN
<statement sequence>

ELSE
<statement sequence>

END;
and here is an example using that format:-

IF Dial("MICROP") THEN
WaitFor("User name?");
Transmit("John Smith|");

ELSE
Alarm(1);
Write("Could not connect to MICROP BBS.|");

END;

notice that the first sequence of commands (between the THEN and the ELSE) is executed if the
condition evaluates to TRUE, and the other sequence of commands (between the ELSE and the END) is
only executed when the condition evaluates to FALSE. In either case, only one of the two sequences of
commands is executed, and the other sequence is skipped.

There is a final form of the IF statement which is best explained by a substantial example showing why
the above formats can be inconvenient in some circumstances. Take a look at the following script, the
purpose of which is to log on to a BBS which provides three different access numbers. The script dials the
first number, if that fails it tries the second, and if that fails it tries the third. If the third number fails then
the script gives an error message and halts. If the script managed to connect to the BBS using any of the
numbers then it will proceed to log on. The script assumes that "FIRST", "SECOND" and "THIRD" match
keys of three different entries in the dialing directory. Here goes:-

SCRIPT Login;

VAR Success : Flag;

BEGIN
Success := FALSE;
IF Dial("FIRST") THEN

Success := TRUE;
ELSE
IF Dial("SECOND") THEN

Success := TRUE;
ELSE
IF Dial("THIRD") THEN

Success := TRUE;
ELSE
Write("All numbers were engaged|");

END;
END;

END;

IF Success THEN
WaitFor("User name?");
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy|");

END;
END;

This script will work perfectly well, but it looks rather awkward and long winded because of all those
ELSEs and ENDs. The need to have a second condition in the ELSE part of an IF statement is so
common that in fact the script language provides a short form way of doing it, like so:-

SCRIPT Login;

VAR Success : Flag;

BEGIN
Success := FALSE;
IF Dial("FIRST") THEN

Success := TRUE;
ELSIF Dial("SECOND") THEN
Success := TRUE;

ELSIF Dial("THIRD") THEN
Success := TRUE;

ELSE
Write("All numbers were engaged! |");

END;

IF Success THEN
WaitFor("User name?");
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy|");

END;
END;

Notice that the "ELSE .. IF" words have become a single "ELSIF", and that this form is treated as a clause
in the first IF statement, and so does not require an END to terminate it. The following is the final
definition of our IF statement.

Note that we have introduced a refinement to our definition notation in order to cope with the idea
of repetition, and with optional features. If a section of the definition is in curly braces like so { }, then this
part of the definition can be repeated as many times as you wish, including zero times. If part of the
definition is shown in square brackets like so [], then this part is optional, but if used can only appear
once.

IF <logical expression> THEN
<statement sequence>

{ ELSIF <logical expression> THEN
<statement sequence> }

[ELSE
<statement sequence>]

END ;
As implied by the above definition, any ELSIF clauses (if used) must come before the ELSE clause (if
used).

Odyssey Script Tutorial
More Advanced Decision Statements
The previous section introduced decision making using the IF statement. However, the script language
also provides an alternative decision making construct called a CASE STATEMENT. In Odyssey script
language there is no efficiency reason to prefer one or the other, so the use of Case statements becomes
a matter of personal choice at a particular time. Using the refined notation described in the previous
section, here is the definition of the syntax of a Case statement:-

CASE <expression> OF
<label> : <statement sequence>

{ | <label> : <statement sequence> }
[ELSE

<statement sequence>]
END;

The idea is that you expect an expression to evaluate to one of a limited number of possible results. You
put that expression at the top (between CASE and OF), and then list each of the expected results, and
the sequence of commands you would like the script processor to execute when the result matches that
entry in the list (that label). If the result matched none of the labels then the ELSE clause is invoked. This
syntax is in many instances clearer than the equivalent, a series of IF-THEN-ELSIF clauses.

For example, the following script extract converts from a "day of the week" expressed as a number from 1
to 7, returning the string equivalent, i.e. Monday, Tuesday etc. Monday is assumed to be day one:-

VAR DayNumber : Number;
DayString : String[10];

BEGIN
CASE DayNumber OF

1: DayString := "Monday";
| 2: DayString := "Tuesday";
| 3: DayString := "Wednesday";
| 4: DayString := "Thursday";
| 5: DayString := "Friday";
| 6: DayString := "Saturday";
| 7: DayString := "Sunday";
ELSE
Write("Not a valid day number! |");
Exit();

END;

Write("That day is ", DayString, "|");
END;

In Odyssey script language (and unlike most other programming languages), you can also go the other
way, in other words you can use a string variable as the expression, and in the labels, for example:-

VAR DayNumber : Number;
DayString : String[10];

BEGIN
CASE DayString OF

"Monday": DayNumber := 1;

| "Tuesday": DayNumber := 2;
| "Wednesday": DayNumber := 3;
| "Thursday": DayNumber := 4;
| "Friday": DayNumber := 5;
| "Saturday": DayNumber := 6;
| "Sunday": DayNumber := 7;
ELSE
Write("Not a valid day string! |");
Exit();

END;
Write("That is day number ", DayNumber, "|");

END;

You can attach more than one label to the same statement sequence by listing each label separated by a
comma. To demonstrate this, the following script extract takes a month number (from 1 to 12) and
calculates how many days there are in that month. It assumes that a logical variable "leap_year" exists,
which helps it decide whether February should have 28 or 29 days:-

CASE month_number OF

2: IF leap_year THEN
days_in_month := 29;

ELSE
days_in_month := 28;

END;
| 4,6,9,11: days_in_month := 30;
| 1,3,5,7,8,10,12: days_in_month := 31;
ELSE
Write("Not a valid month number! |");
Exit();

END;
Write("There are ", days_in_month,

" days in month ", month_number, "|");

Note that the sequence of commands following the colon (after the label) is terminated by a "|" character,
which is why the bars are only used AFTER the first sequence of commands, and not before the first label
(this character is a punctuation symbol quite distinct from the newline character used in strings).

Odyssey Script Tutorial
Looping Statements
The previous two sections have described how to make decisions in scripts. However, there is another
fundamental operation which a language requires in order to become useful, and this is some way of
repeating a sequence of commands. The operation is known as LOOPING or ITERATION.

The Odyssey Script language provides two types of iteration, the WHILE loop and the REPEAT loop. The
difference between the two is that a WHILE loop tests a condition at the beginning of the loop, and a
REPEAT loop tests the condition at the end, guaranteeing that the loop is executed at least once. We will
discuss the WHILE statement first.

Here is the definition of a WHILE loop statement:-

WHILE <logical expression> DO
<statement sequence>

END ;
When the script meets the start of the loop the condition is evaluated, and if FALSE, then the statement
sequence is skipped, without ever having been executed. If the expression turned out to be TRUE then
the statement sequence is executed, after which control returns to the WHILE line and the condition is
tested again.

A WHILE loop is used in preference to a REPEAT loop when you know that you may not want to enter the
<statement sequence> part of the loop even once. An example of this is shown in the following script,
which asks for the name of a file, and then types that file to the terminal screen:-

Script Type_File;

VAR f:File;
filename:String;
line:String[255]; -- allow for long lines

BEGIN
Write("Enter name of a text file? ");
Read(filename);

/* test if file exists,
or no filename entered */

IF filename="" THEN EXIT() END; -- no error
IF NOT IsFile(filename) THEN

Write("Could not find ", filename, "|");
Exit();

END;

Fopen(f, filename); -- open the file
WHILE NOT Feof(f) DO -- stop if end of file

Fread(f, line); -- read a line
Write(line, "|"); -- display that line

END; -- and loop again
Fclose(f); -- finished loop, close file

END;

A WHILE loop is preferred above is because it is possible for the file to exist, but be empty. We do not
want to attempt to read a line from an empty file. The above example made use of several built in
commands which will of course be properly documented later in the chapter.

Now to the REPEAT loop. As mentioned above, the major difference between WHILE and REPEAT loops
are that the latter tests its condition at the end. Here is the definition of a REPEAT loop statement:-

REPEAT
<statement sequence>

UNTIL <logical expression> ;
A good example of when a REPEAT loop would be preferred is a keyboard checking routine. In the
following script example, you want the user of the script to enter a Y or N (yes or no) response to a
prompt. To be robust, the script repeatedly reads the keyboard until a Y or N (or y or n) is entered,
ignoring other characters. The script then sets a logical variable got_yes depending on the result of the
exercise.

VAR ch : Number;
got_yes : Flag;

BEGIN
Write("Please enter Y or N: ");
Priority(TRUE);

REPEAT
ch := RdKey();

UNTIL (ch=78) OR (ch=89) -- N or Y
OR (ch=110) OR (ch=121); -- n or y

Priority(FALSE);

IF (ch=89) OR (ch=121) THEN
got_yes := TRUE; Write("Y|");

ELSE
got_yes := FALSE; Write("N|");

END;
END;

Notice that a WHILE loop could not be used because the loop must execute at least once in order to
assign an initial value to the variable "ch", prior to the first test.

Odyssey Script Tutorial
Constant declarations
Odyssey scripts can include a 'constants declaration section', using a syntax very similar to that used in
Pascal (except that Ody script allows constant expressions). Here are some examples :-

CONST a = 1234; /* assumed to be of type number */
b = $1234; /* ditto */
c = "A string constant";
d = "Hello," + "World"; /* a string constant-expression */
e = (a+b)+1; /* a number constant-expression */
f = Long(a) * a;
g = 12345678; /* assumed to be of type long */

You may have as many constants declared as you like in one constant declaration section, and you may
have as many constant declaration sections as you like. A constant declaration section can appear before
or after (or both) a VAR declaration section, and you can make the const section global, or you can
declare a local constant section inside a procedure or function.

Notice that the constant declaration can be an expression, but if so that expression must evaluate to a
constant - ie. it must be possible for the Odyssey script compiler to completely evaluate it at compile time.
You cannot use any function within a constant expression, except for the type conversion functions
"Number()" and "Long()".

Odyssey Script Tutorial
Commands (Procedures)
The Odyssey script language allows you to create your own specialised commands. You create a
command by defining a PROCEDURE, using the syntax which will be described in this section. Once a
command has been created it can be used in later parts of your script just as if it was another built in
command.

A procedure definition looks very much like a complete script in its own right, and that is more or less
exactly what it is, except that you put a procedure in the same text file as the script which uses it. Like a
script, you can declare variables, but unlike variables declared in the main part of the script, these can
only be used inside that procedure, and not by other procedures or by the main script. The memory used
for variables in a procedure is recovered when you leave the procedure. To use ("call") a procedure, you
simply invoke its name - rather like a magic word. When you do that the procedure will execute, and when
it is finished, the script will continue from the statement following the call.

A procedure provides at least two concrete benefits:-

· The ability to encapsulate a series of commands which you often use, so that they can be invoked
when needed, instead of repeating the same sequence of commands at several places in the script.

· It allows you to make efficient use of memory, since variables required only when a particular section
of the script is running do not hog memory for the entire lifetime of the script.

A procedure also provides another, albeit less concrete benefit, which nonetheless may be the most
important feature. A procedure allows you to break a large script down into smaller functional blocks, each
of which can be more easily understood than if they were all part of one monster main block in the script.
This is simply attacking a complex problem using the "divide and conquer" rule.

Consider the following script example:-

SCRIPT long_winded;

VAR Success:Flag;

BEGIN
Write("Dialing MICROP BBS|");
Success := FALSE;
/* try first number */
IF Dial("FIRST") THEN

IF WaitFor("User name? ",10) THEN
Success := TRUE;
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");

END;
END;
IF NOT Success THEN

/* try second number */
IF Dial("SECOND") THEN

IF WaitFor("User name? ",10) THEN
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");

END;
END;

END;

END;

The above script tries to dial a BBS which has two access numbers. If the first number answers then the
script proceeds to log on to the BBS. If the first number is engaged, the script dials the second number,
and tries to log on there instead.

Notice how the second "IF Dial(" sequence is practically identical to the first, except that it uses a different
key for the dial command. Does this not strike you as wasteful, and long winded? Instead of repeating an
identical sequence of commands, a far better solution would have been to encapsulate that sequence of
commands as a procedure, as in the following example:-

SCRIPT myscript;

VAR Success:Flag;
Key:String[8];

/*...*/

PROC Login();
BEGIN

Success := FALSE;
IF Dial(Key) THEN

IF WaitFor("User name? ",10) THEN
Success := TRUE;
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");

END;
END;

END;

/*...*/

BEGIN
Write("Dialing MICROP BBS|");
/* try first number */
Key:="FIRST";
Login();

IF NOT Success THEN -- first number not available
/* try second number */
Key := "SECOND";
Login();

END;
END;

Notice how the main body of the script is now much reduced, and that the sequence of commands for
logging on is not wastefully repeated in two different places. By the way, the /*... lines are just comment
lines used to make the procedure definition stand out a little better. It is not a requirement of the language.

Another thing to notice is how the Dial() command in the procedure makes use of the variable "Key"
which is assigned a value in the main body of the script. Now you know why you need to put quotes
around a string when you pass it to a command - because commands which expect a string can accept
either literal strings or variables, and it isn't possible to tell which is which unless you wrap literal strings in
quotes.

There is one irritating feature of the modified script, and that is the need to declare an extra variable in the
main script called "Key", whose sole purpose is to pass data to the login procedure. This variable is not
required after login is successful, and yet this variable will not be discarded - it will occupy memory for the
entire lifetime of the script, as well as clutter up the list of variables which will be more important after
login. It would be nice if we could tell the procedure what key to use without having to declare a variable
in the main area of the script (called a "global variable" for short).

As you have probably guessed by now, there is indeed a way to pass data to a procedure without having
to declare a global variable. The solution is to declare the variable as a PROCEDURE PARAMETER.
Here is the last script again, this time using a procedure parameter instead of a global variable. Notice
how this affects both the definition of the procedure, as well as the main body of the script:-

SCRIPT myscript;

VAR Success:Flag;

/*...*/

PROC Login(Key:String);
BEGIN

Success := FALSE;
IF Dial(Key) THEN

IF WaitFor("User name? ",10) THEN
Success := TRUE;
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");

END;
END;

END;

/*...*/

BEGIN
Write("Dialing MICROP BBS|");
/* try first number */
Login("FIRST");
IF NOT Success THEN -- first number not available

/* try second number */
Login("SECOND");

END;
END;

If you look at the main body of the script, you will notice that we no longer assign the key names to a
variable called "Key", instead we just put the data we would have assigned between the round brackets
when we call the procedure. In fact, as far as the main script is concerned, the variable "Key" no longer
exists. Only the procedure knows about this variable, and that variable will only come into existence when
the procedure is called, and is discarded when the procedure returns.

A point should also be made about string overrides and procedure parameters. Notice that when "Key"
was a global variable, we used a string override to limit the string length to eight characters. However,
when we made it a procedure parameter no string override was used. This is because string length
overrides are not allowed in procedure parameters. This is not a limitation - procedure parameters have
no need of overrides, because they automatically allocate exactly the memory they require to hold the
data passed to the procedure, and no more. In other words, you can pass a string of any size to a
procedure which takes a string parameter. However, this also means that you should avoid assigning

values to value string parameters, because you do not know inside the procedure what the maximum
length of that string is. In general, you should consider it bad practice to assign values to any procedure
parameter from within the procedure.

If your procedure needs to use variables for internal purposes, i.e. not to receive data from the caller, then
you can declare those variables actually inside the procedure, like so:-

PROC Login(Key:String);

VAR a,b : Number; -- variables used internally by the
s : String; -- procedure.

BEGIN
IF Dial(Key) THEN

...

These internal variables are the opposite of a global variable, and are thus referred to as LOCAL
VARIABLES. A procedure parameter is also viewed by the procedure as a local variable, even though it
is declared in the parameters section. The distinctive feature of a local variable is that it is only known
about by the procedure which declared it - the variable cannot be used by the main body of the script, or
even by another procedure unless it is passed as a parameter.

Here then is the definition of the syntax of a user defined procedure using what we have learned so far.
Notice that both the <parameters> and <local variables> symbols are in square brackets, meaning that
both are optional. The round brackets of a procedure header however are not optional, and must be
present whether or not the procedure uses parameters:-

PROC <name> ([<parameters>]) ;
[<local variables>]

BEGIN
<statement sequence>

END ;
Returning to our example, remember that the purpose of the script was to connect to a BBS using one of
two access numbers. We set a global variable called "Success" if we succeeded on either one.

Now suppose that we want to keep a note of which access port we were successful with, how would we
modify our procedure to do that? Well, instead of having one global flag for success, we could have two -
one for each access number, looking at which was set to TRUE would tell us which attempt was
successful. So assuming that we have variables called "Success_1" and "Success_2", how would the
procedure know which one to set?

Well, we could do something like this:-

PROC Login(Key:String);
BEGIN

IF Key = "FIRST" THEN
Success_1 := FALSE;

ELSIF Key = "SECOND" THEN
Success_2 := FALSE;

END;
IF Dial(Key) THEN

IF WaitFor("User name? ",10) THEN
IF Key = "FIRST" THEN

Success_1 := TRUE;
ELSIF Key = "SECOND" THEN
Success_2 := TRUE;

END;
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");

END;
END;

END;

but that has several problems. First of all it looks messy, because it has to check the contents of "Key"
everywhere. Secondly, the procedure now has to "know" not only how to do its own job, but the names of
all the keys which are going to be passed to it. This is a pity, because otherwise the procedure was
completely general, and would have worked with any key, making the script easier to adapt for future
needs.

Another trick we could try would be to use another procedure parameter, (called "Success", say), and
have the procedure modify that parameter instead of the global variable. Well, nice try, but that won't
work. Why not? Well, remember that we said above that procedure parameters are really local variables -
they come into existence when the procedure is activated, and are discarded when the procedure returns.
Modifying such a parameter would be like making changes to a photocopy of a document - the original
remains unaffected.

It would be nice if we could use a version of the procedure parameter idea which allowed us to send the
"original" to the procedure, so that the procedure could modify it for us, and send it back.

A way is provided to do exactly that, using a technique called VARIABLE PROCEDURE PARAMETERS.
To make a parameter variable, you just put the word "VAR" in front of the variable name. Here is the
example script, modified to use two separate Success variables as described above, and using a VAR
parameter to return the modified success flag:-

SCRIPT myscript;

VAR Success_1,Success_2:Flag;

/*...*/

PROC Login(Key:String; VAR Success:Flag);
BEGIN

Success := FALSE;
IF Dial(Key) THEN

IF WaitFor("User name? ",10) THEN
Success := TRUE;
Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");

END;
END;

END;

/*...*/

BEGIN
Success_2 := FALSE;
Write("Dialing MICROP BBS|");

/* try first number */
Login("FIRST", Success_1);
IF NOT Success_1 THEN -- first number not available

/* try second number */
Login("SECOND", Success_2);

END;

IF Success_1 THEN
Write("Connected on FIRST number.|");

ELSIF Success_2 THEN
Write("Connected on SECOND number.|");

ELSE
Write("Could not connect on either number.|");

END;
END;

If you look at the two calls to "Login" you will see how the individual success variables are passed to the
procedure. Taking the first call, what happens in effect is that the value of the global variable "Success_1"
is assigned to the local variable "Success" which the Login procedure knows about. When the procedure
returns, the contents of "Success" are copied back into the original variable "Success_1", hence the
original is modified as the copy was.

Our previous definition of a procedure syntax used the symbol <parameters> without really defining what
that meant. Here then is an exact definition of the syntax of the procedure parameters part. Remember
that { } means a repeated section, while [] means an optional section:-

[VAR] <name> {,<name>} : <type>
{ ; [VAR] <name> {,<name>} : <type> }

That looks a little complicated, so take your time when trying to understand it. In the meantime, here are a
series of examples showing valid procedure headers (ie., just the procedure name and the parameter
declarations):-

PROC NoParams();
PROC OneParam(a:Number);
PROC TwoParams(a,b:String);
PROC TwoAgain(a:Number; b:String);
PROC VarFirst(VAR a:Number; b:String);
PROC VarSecond(a:Number; VAR b:String);
PROC NumAndTwoVars(a:Number; VAR b,c:String);
PROC TwoVarsAndNum(VAR a,b:String; c:Number);
PROC ThreeVars(VAR a,b:String; VAR c:Number);

The VAR modifier only applies to the variable name or list of names immediately following. If
there is a semicolon and another list of variables then these are NOT variable parameters unless there is
also another VAR. For example, in the case of "VarFirst" above, variable "a" is a variable parameter, but
variable "b" is not. In "TwoVarsAndNum", variables "a" and "b" are VAR parameters, while "c" is not.

Odyssey Script Tutorial
Commands (Functions)
Odyssey supports a special type of procedure, known as a FUNCTION PROCEDURE, or simply as a
FUNCTION. A Function is like a normal procedure, except that it is designed to be used in expressions,
although it can also be used like a normal procedure. We have already seen how variables are used in
expressions, and a function really works a bit like an intelligent variable, in that the expression uses the
function as if it were an ordinary variable with an ordinary value, ignoring the fact that the value is actually
calculated on the fly, when the function is named.

You can do all the things with a function that you could with a procedure. The only difference is that a
function starts with the word FUNC instead of PROC, and that you have to tell the script processor what
type of variable the function will look like. Here is a definition of the syntax of a function declaration:-

FUNC <name> ([<parameters>]) : <type> ;
[local variables]

BEGIN
<statement sequence>

END ;
When we write a function, and want to return a result of the appropriate type to the calling expression, we
use a RETURN STATEMENT, as follows:-

BEGIN
....
RETURN <expression> ;
....

END ;

Use of the RETURN statement in a function causes an immediate exit from the function, with control
returning to the calling expression. In fact, the return statement can also be used in a normal procedure to
force an immediate return, simply using a RETURN statement without an expression.

Returning to the example we used in the section on procedures, we could convert the "Login" routine into
a function, allowing us to get rid of the "Success" variable, like so:-

SCRIPT myscript;

/*...*/

FUNC Login(Key:String) : Flag;
BEGIN

IF Dial(Key) THEN
IF WaitFor("User name? ",10) THEN

Transmit("John Smith|");
WaitFor("Password: ");
Transmit("smithy");
RETURN TRUE;

END;
END;
RETURN FALSE;

END;

/*...*/

BEGIN
Write("Dialing MICROP BBS|");
/* try first number */
IF NOT Login("FIRST") THEN

/* try second number */
Login("SECOND");

END;
END;

Notice how the main body of the script is allowed to use the function both in an expression (in the <logical
expression> part of an IF statement), and also as a normal procedure call.

Although the example above showed a function defined as returning a Flag (logical) type, functions can
also be declared as returning any other type, eg. Number, File or String.

In the case of string functions, you cannot use a string override when you declare the function type. In
other words the following is not legal syntax:-

FUNC string_func () : String[20];

As in the case of procedure parameters, this is not a limitation, it is simply not necessary to define a string
size for a string function, because a string function can return a string of any size.

Odyssey Script Tutorial
Include files
Scripts can use include files, eg :-

 #include "mystuff.inc"

When the script compiler encounters the above line it acts as if that line was replaced by the contents of
the file "mystuff.inc". Include files can be used for anything you like, eg. utility functions that you use in a
lot of scripts, common constant declarations needed by several different scripts, etc.

Include files can themselves use include files, however one should avoid letting include files nest too
deeply, since the system may run out of free file handles.

One should generally try to ensure that you don't include the same file twice in one compilation, as this
will almost certainly cause an "Identifier declared twice" error. This happens most easily for example when
a script includes a "common declaration header file", and then includes a utility functions file which itself
includes the common declarations header. You can avoid this problem by using the conditional
compilation features of the Ody script language, eg. if you wrap up your common declarations like this :-

 #ifndef COMMON_H
 #define COMMON_H

 CONST a = 1234; /* assumed to be of type number */
 b = $1234; /* ditto */
 c = "A string constant";
 d = "Hello," + "World";
 e = (a+b)+1;
 f = Long(a) * a;
 g = 12345678; /* assumed to be of type long */

 #endif

this will ensure that the compiler only sees the above CONST section once in any compilation that pulls in
this header file.

If you don't include a path in the include file directive then Odyssey will look for the file in the "Directory for
Scripts" specified in the setup dialogs, or in the Odyssey home directory if that setup option is blank. Use
a full path specification to override this behaviour.

Odyssey Script Tutorial
Conditional Compilation
By defining compile-time symbols, and by inserting tests into your script of whether a symbol is defined or
not, you can control which sections of your script are seen by the compiler. The syntax used for
conditional compilation is very similar to that found in a C preprocessor, except that you cannot assign a
value to a conditional compilation symbol, and you can't use C type macros.

The conditional compilation directives supported are described below. Note that these directives must
appear in your script in lower case, eg. use #define and #ifdef - not #DEFINE or #IfDef.

#define <symbol>

Makes <symbol> known to the compiler. <symbol> must conform to usual Odyssey script language
identifier naming conventions, ie. it must start with a letter, and may then contain further letters, digits, or
underscores. Also note that like any other script language identifier, the <symbol> is not case sensitive,
though the conditional compilation directives themselves *are* (as mentioned above).

#ifdef and #ifndef ('if defined' and 'if not defined')

The syntax of the #ifdef (if defined) directive is :-

 #ifdef <symbol>
 <script language statements>
 [#else
 <script language statements>]
 #endif

In other words, if <symbol> is known to the compiler then the first set of script language statements is
compiled, otherwise the second set of script language statements is compiled (though only if an #else
clause is used).

The syntax for the #ifndef directive is identical, except that the first script section is compiled if the
directive is not defined, and so on.

#undef <symbol> (undefine a symbol)

The #undef directive makes the compiler forget a symbol. If the compiler never knew that symbol then
this statement is ignored (the latter doesn't cause an error).

Odyssey Script Language
Script Commands
This help chapter presents a complete list of all the built in procedure and function commands provided by
the Odyssey script language. The commands are grouped into functional categories as follows:-

Modem and Serial I/O Commands

AutoAnswer Break HangUp ModemInit
MNPAnswer MNPClass MNPConnect OnLine
Paste PortInit Receive SetPort
Sleep Transmit

Display and Keyboard Commands

Alarm BackGnd ForeGnd ClrEol
ClrEos ClrLine ClrScr ColorDisplay
DelLine InsLine DisableCursor EnableCursor
GotoXY KeyPressed RdKey KillWindow
UseWindow Window LoadKeyDef Menu
Read SetHelp WhereX WhereY
Write

File and Directory Commands

Chain ChDir CopyFile CurrentDir
DiskSpace DOS Download Upload
Edit FAppend FCreate FOpen
FClose FDelete FEOF FetchStr
FFirst FNext FGetPos FQualify
FRead FWrite FRename FSeek
FSize IsFile LastTransferredFile
MkDir PickFile Shell

Dialing Commands

Dial TagDirEntries DialTagged DialQueued

See also: Introduction, Example

Mode Control Commands

CanEscape CRinTranslation CRoutTranslation
Emulate EventLogging LocalEcho
LogFile PrinterOff PrinterOn
RestoreDefaults SetASCII SetAutoWrap
SetBackspace SetCISB SetDialDelay
SetDialingDir SetDialPrefix SetDialTimeout
SetDownloadDir SetFlowControl SetMaxRedials
SetRawLogging SetSoundEffects SetStripParity
SetZmodem

Host Mode Commands

FileSize GetHostInfo HostShell WaitForCall

See also: Introduction

Watching and Waiting Commands

WaitFor WaitForSilence WatchFor
Received WatchAgain ClrWatch
ClrAllWatches When WatchEvent
GrabWhen ReadScreen

See also: Introduction

DLL Commands

LoadDLL SendMessage UnloadDLL

See also: Introduction

Windows API Access Commands

LoadResourceLibrary FreeResourceLibrary
LoadDialog GetDialogMessage
EndDialog GetDlgItemInt
GetDlgItemText SetDlgFocus
CheckDlgButton CheckRadioButton
DlgDirList DlgDirListComboBox
GetDlgCtrlID GetDlgItem
IsDlgButtonChecked SendDlgItemMessage
SetDlgItemInt SetDlgItemText
MessageBox LoadMenu
DestroyMenu AssignMenu
CreateToolBar AssignToolBar
DestroyToolBar AssignStatus
SetStatusField WinHelp
FindWindow SetWindowText
MessageBeep GetFocus
GetOdyWindow GetModuleHandle
WinSendMessage WinPostMessage

See also:
Introduction
Accessing any Function in a DLL

Miscellaneous Commands

Address AllowYield ASC CHR
Date Time DEC INC
Delay DTESpeed Exit GetEnv
GetCallInfo Halt HaltE IntToStr
StrToInt IsDirKey Length LogEvent
OdyVersion Pos Priority SetTimer
TimerExpired SilentMode StrEdit SubStr
ToLower ToUpper

Odyssey Script Commands
Modem and Serial I/O Commands
The following script commands form the Modem and Serial I/O Commands category:-

AutoAnswer
Break
HangUp
ModemInit
MNPAnswer
MNPClass
MNPConnect
OnLine
Paste
PortInit
Receive
SetPort
Sleep
Transmit

Odyssey Script Commands
AutoAnswer
PROC AutoAnswer(On:Flag);

This command uses the settings in the Setup|Modem (Init strings) dialog to enable or disable your
modem's auto-answer mode. It is intended primarily for use in "Host mode" scripts. Remember that
sending modem control strings explicitly from a script makes that script non-portable to different types of
modem, so use this command instead.

Examples:
AutoAnswer(TRUE); -- enable modem auto-answer
AutoAnswer(FALSE); -- disable modem auto-answer.

Odyssey Script Commands
Break
PROC Break(tenths:Number);

This command asserts the break signal on the modem interface for "tenths" tenths of seconds. Some
systems (especially directly connected mainframe computers), require this signal to tell them that a
terminal is newly connected and requires attention.

Examples:
Break(10); -- assert break for one second
Break(5); -- assert break for half a second.

Odyssey Script Commands
HangUp
PROC HangUp();

This command tells Odyssey to hang up the line, ie. disconnect or go on-hook.

Example:
HangUp();

Odyssey Script Commands
ModemInit
PROC ModemInit();

This command uses the "Init String" setting in the Setup|Modem (Init strings) dialog to re-initialise the
modem. This is the same string that Odyssey normally sends to the modem when it starts up, or when
you press the ALT+J command. Remember that sending modem control strings explicitly from a script
makes that script non-portable to different types of modem, so use this command instead.

Example:
ModemInit();

Odyssey Script Commands
MNPAnswer
FUNC MNPAnswer():Flag;

This command tells Odyssey to check whether a calling modem wants to negotiate an MNP error
corrected link. This function would typically be called immediately after the script detects that it has a
carrier. The function returns TRUE if an MNP link was established, or FALSE if not.

Example:
IF OnLine() THEN

Got_MNP := MNPAnswer();

Odyssey Script Commands
MNPClass
FUNC MNPClass():Number;

This function returns the operating level (class) of the current software MNP connection. Odyssey
supports classes 2, 4 and 5. The function will return 0 if software MNP is not in use.

Example:
IF Dial("MICROP") THEN

IF MNPClass() <> 0 THEN
Write("Software MNP in use.|"); ...

Odyssey Script Commands
MNPConnect
FUNC MNPConnect():Flag;

This command tells Odyssey to negotiate an MNP connection with a remote host, which it has just
successfully dialed. This command is a hangover from the first version of Odyssey, which did not have a
dialing directory. In the current version, when Odyssey is dialing, it is far simpler for a script to allow the
dialer to take care of such details as the line parameters, the terminal emulation, and whether or not MNP
is required. The only time this command might be preferred to the dialer is if for some reason the dialer
cannot be used, perhaps because the modem is not Hayes compatible, and the Odyssey modem
configuration section cannot cope with the differences. In this case the script may have to issue the
modem dial command explicitly, and also take care of negotiating the MNP link. This function returns
TRUE if an MNP link was successfully negotiated, or FALSE if not.

Example:
Transmit("ATDP012-345-6789|");
IF WaitFor("CONNECT",30) THEN

Got_MNP := MNPConnect();
....

Odyssey Script Commands
OnLine
FUNC OnLine():Flag;

This function tests the status of the carrier (DCD) modem signal, and returns TRUE if the modem is online
to a remote modem, or FALSE if it is not. Note that an incorrectly configured cable or modem may cause
this function to return a spurious result.

Example:
IF OnLine() THEN

WaitFor("User name?");

Odyssey Script Commands
Paste
PROC Paste(s:String);

This command transfers the string "s" to the serial port. A newline sequence is appended automatically.
This function does not perform any special interpretation of characters in the string, neither does it
execute any inter-character delays (it does however execute a line delay according to the setting in the
ASCII panel of the Setup|File transfer dialog). This makes it faster to use when uploading text, as well as
more efficient than the alternative Transmit command when used on an MNP corrected link. On the other
hand, the fact that there are no character delays may mean that this command transmits text too quickly
for some hosts, in which case the alternative Transmit command will need to be used.

Example:
Fread(infile, line);
Paste(line);

Odyssey Script Commands
PortInit
PROC PortInit(Baud,Databits:Number;
 Parity;Stopbits:Number);

This command configures the serial port for a required baud rate, data bits and parity. The "Parity"
parameter can be NONE, EVEN or ODD. Baud rates should be divided by 100, ie., use 3 for 300 bps, 192
for 19200 bps. This allows you to specify baud rates up to 115200, which would otherwise overflow the
maximum value of a Number parameter (note that being able to specify a high baud rate is no guarantee
that your hardware will cope with that speed).

Examples:
PortInit(12,7,EVEN,2);
PortInit(192,8,NONE,1);
PortInit(576,8,NONE,1);

Odyssey Script Commands
Receive
PROC Receive(VAR s:String; timeout:Number [; NoEcho]);

This command tells the script to receive a string from the serial port, terminated by a carriage return. The
string, if read, will be stored in the variable "s". A timeout in seconds must be specified. The script can
optionally include the NoEcho flag, which tells Odyssey that characters must be echoed with a "*"
character. A second NoEcho mode is provided which does not echo any character at all. This command is
used to allow a remote user to type a string in answer to a prompt generated by an Odyssey script.

Examples:
Receive(s,30); - read string, with echo.
Receive(s,30,NoEcho); - read string, echo '*'.
Receive(s,30,NoEcho+1); - read string, no echo.

Odyssey Script Commands
SetPort
PROC SetPort(PortNo:Number);

This command selects comm port "PortNo" for future serial I/O operations. The command is ignored if the
selected comm port does not exist.

Example:
SetPort(2);

Odyssey Script Commands
Sleep
PROC Sleep();

This command suspends script execution until the carrier drops. A typical use for this command is when
the script has sent a logoff command to the host BBS, and is waiting for that command to produce the
expected line drop. The script would then perform any post-connection cleanup it needed, such as closing
a log file, or updating a session file. Another use might be to suspend the script while the user interacts
with the host directly, meanwhile the script would wait for disconnection before taking control again.

Example:
WaitFor("Command?");
Paste("bye");
Sleep();
LogFile(CLOSE);

Odyssey Script Commands
Transmit
PROC Transmit(s:String);

This command transfers a string to the serial port. The characters in the string will be transmitted with
inter character and line delays as per the settings of the ASCII panel of the Setup|File transfer dialog.
Some characters in the string are not transmitted literally, but instead cause some special action to be
performed, as follows:-

Character(s) Action

~ Pause for half a second.
^x Send control character x.
^nnn Send the character whose ASCII code is nnn. This must be a three digit decimal

number,, use leading zeroes if necessary to pad out to three digits.
| Send a newline sequence.

Examples:
Transmit("Is this correct? Y/N: Y^H");
Transmit("ATZ|~~ATX2|~");
Transmit("^H ^008");

Odyssey Script Commands
Display and Keyboard Commands
The following commands make up the script language Display and Keyboard Commands category.

Alarm
BackGnd,ForeGnd
ClrEol,ClrEos,ClrLine,ClrScr
ColorDisplay
DelLine,InsLine
DisableCursor,EnableCursor
GotoXY
KeyPressed,RdKey
KillWindow,UseWindow,Window
LoadKeyDef
Menu
Read
SetHelp
WhereX,WhereY
Write

Odyssey Script Commands
Alarm
PROC Alarm(Seconds:Number);

This command causes Odyssey to make an intermittent beeping noise for the required period of seconds.
This command would typically be used to warn the user of a normally unattended script that some event
has occurred.

Example:
Alarm(5);

Odyssey Script Commands
BackGnd,ForeGnd
PROC BackGnd(Color:Number);
PROC ForeGnd(Color:Number);

These commands are used to set terminal window text background and foreground colors from an
Odyssey script. These colors will be used for text displayed on the terminal screen, or in a text window if
created by the script. The valid background color values range from 0 to 7, and valid foreground colors
range from 0 to 15. The mapping of numbers to colors is as follows:-

Background Colors

0=Black, 1=Blue, 2=Green, 3=Cyan, 4=Red, 5=Magenta, 6=Brown, 7=Light Gray.

Foreground Colors

0=Black, 1=Blue, 2=Green, 3=Cyan, 4=Red, 5=Magenta, 6=Brown, 7=Light Gray, 8=Dark Gray,
9=Light Blue, 10=Light Green, 11=Light Cyan, 12=Light Red, 13=Light Magenta, 14=Yellow,
15=White.

Attempts to set bright background colors are ignored, and the equivalent non bright color is set instead,
unless the Emulate 'Blink' attribute checkbox is disabled in the Setup|Terminal dialog.

Examples:
BackGnd(1); -- set blue background
ForeGnd(15); -- set white foreground

Odyssey Script Commands
ClrEol,ClrEos,ClrLine,ClrScr
PROC ClrEol();
PROC ClrEos();
PROC ClrLine();
PROC ClrScr();

These commands provide various screen or window erasing functions. ClrEol clears from the cursor
position to the end of the line, ClrEos clears from cursor position to end of screen or window, ClrLine
erases the entire cursor line and repositions the cursor at the left margin, and ClrScr clears the entire
terminal window, placing the cursor at the origin (top left corner).

Examples:
ClrEol();
ClrScr();

Odyssey Script Commands
ColorDisplay
FUNC ColorDisplay():Flag;

Obsolete. This function always returns TRUE in the Windows version of Odyssey.

Odyssey Script Commands
DelLine,InsLine
PROC DelLine();
PROC InsLine();

These commands are used for inserting and deleting lines on the terminal window or in a script window.

When InsLine() is called the lines on the display from the cursor line and below scroll down by one line,
leaving a blank cursor line. The line scrolled out of the display is lost. The cursor does not move.

When DelLine() is called the lines on the display from one below the cursor line to the last line scroll up
by one line. A blank line scrolls in at the bottom and the old cursor line is lost. The cursor does not move.

Examples:
DelLine();
InsLine();

Odyssey Script Commands
DisableCursor,EnableCursor
PROC DisableCursor();
PROC EnableCursor();

These commands respectively disable (hide) or enable (show) the text cursor for the terminal window or
script window. Each window has its own independent cursor, and a call to either of the above commands
affects the cursor for that window only.

Example:
Window(5,5,40,4,"",$70);
DisableCursor();
Write("Hello - press a key!");
RdKey();
EnableCursor();
KillWindow();

Odyssey Script Commands
GotoXY
PROC GotoXY(x,y:Number);

This command positions the cursor at coordinate x,y on the current window. The coordinate system
ranges from 0 to <columns-1> in the x direction, and 0 to <lines-1> in the y direction, where <lines> and
<columns> indicate the dimensions of the currently active window. Attempts to position the cursor beyond
the right margin or below the bottom line will leave the cursor at the rightmost column or last line.

Example:
x:=WhereX(); y:=WhereY();
GotoXY(0,0); Write("This is an error message.|");
GotoXY(x,y);

Odyssey Script Commands
KeyPressed,RdKey
FUNC KeyPressed():Flag;
FUNC RdKey():Number;

These commands respectively test whether a key is ready to be read, or read a key from the keyboard.
The key codes returned by RdKey are as returned by DOS (not Windows). Normal keyboard keys
produce a single ASCII code, while function keys produce two codes (a zero followed by a pseudo scan
code), requiring two separate calls to RdKey.

The KeyPressed command returns TRUE if a key is waiting to be read, or FALSE if not. In either case,
the function does not wait for a key.

The RdKey command waits for a key press if necessary.

Note: A script cannot use these commands without taking some precautions, because keys are
normally read by the foreground Odyssey terminal process, and will not be seen by the script. Therefore,
before using either of these commands the script should execute a call to Priority(TRUE) to prevent the
terminal process from stealing keys, and then call Priority(FALSE) when keyboard access is no longer
required. See elsewhere for a description of the Priority command.

Example:
Priority(TRUE);
Write("Press any key to stop looping.||");
REPEAT

Write("Hello, World!!|");
UNTIL KeyPressed();
ch := RdKey();
Priority(FALSE);

Odyssey Script Commands
KillWindow,UseWindow,Window
PROC KillWindow();
PROC UseWindow(win_handle:Number);
FUNC Window(x,y,width,height:Number;
 title:String; color:Number):Number;

These commands are provided to allow a script to create, use, and then discard DOS-Odyssey style text
windows.

The Window() function creates a window of the "Terminal Window" type, with its top left corner at x,y, of
width "width" and height "height" (all dimensions in character widths or heights). The window will have a
title "title" (an empty string can be supplied if you do not wish a title). The "color" is the IBM PC standard
text mode color attribute to give to the window, and its frame. This color attribute is conveniently
expressed as a hex number in which the first and second digits are color codes as given in the description
of the ForeGnd and BackGnd commands described elsewhere. The function returns a number, called the
window handle, which can be used in future calls to UseWindow to select this window for output. The
window is by default already selected for output immediately after its creation. When a window is selected
for output, all the normal display commands described in this section apply to the script window, and not
to the terminal window.

The UseWindow() command selects a window for output. The parameter "win_handle" refers to a
number obtained from a previous call to the Window function. You can also use a handle number of one,
which selects the main terminal screen for output. It is not necessary to call UseWindow immediately
after creating a new window, since the new window is already selected for output. This command is only
required if you want to switch to another window without destroying the current window.

The KillWindow() command destroys the currently selected window.

Be extremely careful when using the above commands. Select windows correctly, using
only valid handles returned by Window() calls.

Example:
Priority(TRUE);
w1 := Window(2,2,40,5,"Window 1",$70);
w2 := Window(5,5,50,5,"Window 2",$4F);
Write("This should appear in window 2.|");
UseWindow(w1);
Write("This should appear in window 1.|");
RdKey();
KillWindow();
UseWindow(w2);
RdKey();
KillWindow();

Odyssey Script Commands
LoadKeyDef
FUNC LoadKeyDef(key_fn:String):Flag;

This command loads a keyboard definition file created by the Odyssey "Keyboard Remapping" feature.
A newly loaded keyboard definition replaces any previously loaded definition, ie. the new keyboard
macros are not merged with existing ones. The "key_fn" string parameter is the name of the keyboard
template (x.KEY) file. The function returns TRUE if the keyboard definition was successfully loaded,
FALSE if it was not.

Examples:
LoadKeyDef("MYKEYDEF");
IF NOT LoadKeyDef("MYKEYDEF") THEN

....

Odyssey Script Commands
Menu
FUNC Menu(x,y,width:Number;
 Title:String;
 option1 {,optionN}:String;
 Menu_Flags:Number):Number;

This command allows the script to create and use a floating popup menu. The top left corner of the menu
will be positioned at x,y notional character widths/heights from the origin of the Odyssey MDI desktop
area.

The "width" and "title" arguments are ignored in the Windows version of Odyssey.

Following the title argument is a variable number of string parameters, each specifying one menu option,
with a maximum of forty characters in each. Up to sixteen menu options are allowed. The menu flags
parameter allows you to give some optional "flavours" to the menu, such as the ability to leave the menu
without making a selection by pressing the <Esc> key. The "menu_flags" values allowed are as follows:-

Menu_Flags
Value Meaning
0 User cannot cancel the menu by pressing <Esc>.
1 User may cancel menu by pressing <Esc>

The DOS version of Odyssey allowed further menu_flags values of 2 and 3 (ie. bit 1 on or off), which
controlled whether or not a menu item could be selected by typing the first character of the menu item.
While scripts which set these values are accepted by the Windows Odyssey script compiler, this setting
will actually be ignored. However, the same effect can be achieved by prefixing the "selection character"
in the menu item with an ampersand '&' - which causes that character to be underlined, and allows that
character to be used to select the item.

The Menu() function returns the number of the menu option selected (zero being the number of the first
option), or else the function returns -1, meaning that the user pressed <Esc> - this can only happen if the
"menu_flags" value allowed escape.

Example:
Select := Menu(5,5,24,"Menu Title",

" 1 - First menu option ",
" 2 - Second menu option ",
" 3 - Third menu option ",
" Q - Quit ",
3);

CASE Select OF
-1: (* user hit escape *)

| 0: (* first option *)
| 1: (* second option *)
| 2: (* third option *)
| 3: (* quit selected *)

END;

Odyssey Script Commands
Read
PROC Read(VAR s:String [; NoEcho]);

This command allows the script to read a string from the keyboard. The resulting string is placed in the
variable "s". If the optional "NoEcho" modifier is used then the read string routine will echo "*" for
characters typed, instead of the characters themselves. This is useful for secure entry of passwords etc.

Examples:
Write("Enter your user name: ");
Read(Username);
Write("Enter your password: ");
Read(Password,NoEcho);

Odyssey Script Commands
SetHelp
PROC SetHelp(help_msg:String);

This command allows a script to display a single line help message on the status line.

The "help_msg" parameter is a string containing the literal text to be displayed, except that any part of the
string enclosed in curly braces { } will be highlighted when displayed.

To remove a single line help message from the display simply call the SetHelp command with an empty
string as a parameter.

Calls to SetHelp may be nested, ie. a previous help line is not destroyed when overwritten by a new line.
A call to SetHelp with an empty string parameter will remove the latest help line, causing the previous
help line to become visible once more. There is a maximum nesting limit of ten help lines, after which
further SetHelp calls are ignored (unless they are removing a help line rather than placing one).

Examples:
SetHelp("Press: {F2}-select {Esc}-cancel");
SetHelp(""); -- remove help line.

Changes:

A new feature in the Windows version of Odyssey allows you to split the help line up into "panels", such
as the panels which are used in the Odyssey Terminal Window and Text Editor status lines. To do this,
simply prefix a sequence of characters in the help line text with a field width enclosed in square brackets.
For example :-

SetHelp("[20]PanelText1 [30]PanelText2 [0]PanelText3");

The above example creates a status/help line with three panels, the first panel being 20 average
character widths wide, the second being 30 avcharwidths wide. The third panel has a width of zero, which
is interpreted by Odyssey as meaning "make this panel occupy the remainder of the status line". Only the
last panel may have a width of zero. If the zero width panel did not exist then a fourth panel would have
been created to occupy the remainder of the status line.

Odyssey Script Commands
WhereX,WhereY
FUNC WhereX():Number;
FUNC WhereY():Number;

These commands allow a script to respectively determine the current cursor X and Y coordinates, relative
to the terminal or script window origin (whatever is currently selected for output). These commands are
typically used either to ensure that the cursor is at a particular screen location prior to transmitting a string
(useful for hosts with complicated login screens), or else are used to store current cursor coordinates in
order to restore cursor position later.

Example:
WHILE (WhereX()<>30) OR (WhereY()<>12) DO

(* wait for host to finish login screen *)
END;
Delay(1);
Transmit("password|");

Odyssey Script Commands
Write
PROC Write(item {,item} : String_or_Number);

This command is used to write data to the terminal. It can accept a variable number of string or number
parameters. If the parameter is a number then it may optionally be immediately followed by a colon and a
value x, causing the number to be right justified in a field padded to width x. If a string parameter contains
the character "|" then this will not be displayed, instead this will cause the cursor to be moved to the next
line. Characters are actually written to the active terminal emulation, not directly to the display, so it is
possible to send escape sequences which control the terminal using the ^x notation described for the
Transmit command.

Examples:
Write("Hello, World.|");
Write("I am ", age, " years old today.|");
Write("I am ", age:5, " years old today.|");

Odyssey Script Commands
File and Directory Commands
The following list of script commands form the File and Directory Commands category.

Chain
ChDir
CopyFile
CurrentDir
DiskSpace
DOS
Download,Upload
Edit
FAppend,FCreate,FOpen
FClose
FDelete
FEOF
FetchStr
FFirst,FNext
FQualify
FRead,FWrite
FRename
IsFile
LastTransferredFile
MkDir
PickFile
Shell

Odyssey Script Commands
Chain
PROC Chain(script_name:String);

This command allows one script to execute another. The name of the child script to be executed is
passed in the "script_name" parameter. Control does not return to the original script, which is terminated.
You can explicitly return control to the original script by using another Chain command in the child to
invoke the parent. The script to be executed by the chain command must be present in the script
directory.

Example:
Chain("MYSCRIPT");

Odyssey Script Commands
ChDir
FUNC ChDir(dir_name:String):Flag;

This command is used to change directories from within a script. You must use this command in
preference to changing directories from within a DOS shell, or DOS command, since Windows always
restores its default "current" directory on return from the shell. The function returns TRUE if the change
directory command succeeded in finding the named directory.

Example:
IF NOT ChDir("C:\ODYSSEY\DOWNLOAD") THEN

Write("Download directory does not exist.|");
....

Odyssey Script Commands
CopyFile
FUNC CopyFile(source_file,dest_file:String):Flag;

This is a high level function for copying a single file from one location to another. The function returns
TRUE if the copy proceeded without error, or FALSE otherwise. The parameter "source_file" must specify
a complete file path, and should not contain wildcards. "dest_file" can either be a complete filename, or a
file path ending in "\", in which case the copy will keep the same name as the original, and will be stored
in the specified location.

Example:
IF NOT CopyFile("\backupd\odyssey.dir","\odyssey\") THEN

Write("Could not copy backup dialing dir.|");
....

Odyssey Script Commands
CurrentDir
FUNC CurrentDir():String;

Returns the name of the current DOS working directory.

Example:
cdir := CurrentDir();
Write('Current Directory is "',cdir,'".|');

Odyssey Script Commands
DiskSpace
FUNC DiskSpace():Number;

Returns the space available on the current drive, in kilobytes.

Example:
space := DiskSpace();
Write("The current drive has ",space,"K free.|");

Odyssey Script Commands
DOS
FUNC DOS(s:String;
 WAIT or NOWAIT [+NOCLEAR]):Number;

Causes the script to pass the command "s" to the DOS command processor for execution.

The WAIT or NOWAIT flags are ignored in the Windows version of Odyssey. Always use "NOWAIT" in
new scripts, as the interpretation of these modifiers might change in future.

The optional NOCLEAR modifier tells Odyssey not to clear away the Odyssey screen before executing
the DOS command. In the Windows version of Odyssey this means that the DOS application runs inside
a minimized window.

This command is retained for backward compatibility with the DOS version of Odyssey. New scripts
should avoid calling this function (yes, I know how useful it can be), because future versions of Windows
may not run on top of DOS.

Examples:
DOS("dir/w", WAIT);
IF DOS("pkunzip zipfile", NOWAIT) <> 0 THEN

....
END;
DOS("myprog", NOWAIT+NOCLEAR);

Odyssey Script Commands
Download,Upload
FUNC Download(protocol
 [; filename:String [,default-action]]):Flag;
FUNC Upload(protocol; filespec:String):Flag;

The Download and Upload commands are used for file transfer. The Download command receives a file
from the host using protocol "protocol", and the Upload command sends a file to the host, also using the
protocol specified. Both functions return TRUE if the file transfer succeeded, FALSE if not.

The "protocol" parameter can be one of: ASCII, XMODEM, YMODEM, BYMODEM, CISB, KERMIT or
ZMODEM. An additional protocol, GYMODEM, may only be used in the download command.

The Upload() command always requires a filename parameter, which may contain wildcards if a batch
protocol is used.

The "filename" parameter of the Download() command is required if the protocol used is not a batch
protocol, ie. if it is one of ASCII, XMODEM, or YMODEM. Remaining protocols do not require, and will not
allow a filename to be supplied.

The third parameter of the Download() command is optional, and specifies what action Odyssey should
take if it finds that the file about to be downloaded already exists. This parameter can take one of the
following values:-

· PromptUser. The user of the machine running the script is prompted to choose which action he
prefers. This is the default if you do not supply the third parameter.

· CancelTransfer. Cancel the transfer if the file already exists.

· KeepOldFile. Keep the old file by first renaming it, then continue the download.

· EraseOldFile. Discard the old file, replacing it with the file about to be downloaded.

· ResumeTransfer. If Zmodem or Compuserve B+ is in use, then this option causes a file transfer to
be resumed, any conflict is assumed to be caused by an attempt to complete a transfer.

In the case of batch protocols, the script language does not normally allow the use of a second parameter
(the filename) since that is handled automatically by the protocol. However, if you wish to specify a third
parameter then for batch protocols only you can simply use an empty field for the second parameter (see
the last Zmodem example below).

Examples:
Download(XMODEM, "filename.ext");
Download(ZMODEM);
success := Upload(ZMODEM, "filename.*");
Download(YMODEM); (* defaults to PROMPTUSER *)
Download(XMODEM,filename,KeepOldFile);
Download(ZMODEM,,ResumeTransfer); --note empty field.

Odyssey Script Commands
Edit
PROC Edit(filename:String);

This procedure opens an Odyssey Text Editor window into which is loaded the file indicated by the
"filename" argument.

Example:
Edit("READ.ME");

Odyssey Script Commands
FAppend,FCreate,FOpen
FUNC FAppend(VAR f:File; filename:String):Number;
FUNC FCreate(VAR f:File; filename:String):Number;
FUNC FOpen(VAR f:File; filename:String):Number;

These commands exist to allow a script to open a file. Each command finds and opens the file "filename",
initialises the file variable "f", and associates the file variable with the newly opened file. The file variable
is then used in future references to that file when reading, writing, and so forth. Each function returns a
number which corresponds to DOS input/output error code, which should be zero if there was no error.

FCreate() creates a new file, ready for data to be written to it. FOpen() opens an already existing file.
FAppend() also opens an already existing file, but does so in such a way that new data written to the file
will be appended after the existing file contents. FOpen() and FAppend() always open files for both
reading and writing.

Example:
FAppend(f, "SESSION.LOG");
FWrite(f, "Session start: ",Date()," ",Time());
FClose(f);

Odyssey Script Commands
FClose
FUNC FClose(VAR f:File):Number;

This command closes an open file, ie. any buffered data is written to disk, the DOS directory is updated,
and the file handle is deallocated. All open files must be closed before a script exits. The function returns
a DOS error code which should be zero if the command succeeded.

Example:
FClose(f);

Odyssey Script Commands
FDelete
FUNC FDelete(filename:String):Number;

This command causes the file "filename" to be deleted. The function returns a DOS error code which
should be zero if the operation was successful.

Example:
FDelete("FILE.EXT");

Odyssey Script Commands
FEOF
FUNC FEOF(f:File):Flag;

This command is used to test whether the file read/write pointer associated with file "f" currently points to
the end of the file. The function returns TRUE if so, or FALSE if not. This command is only useful with files
opened using the FOpen command, since FEOF() is always TRUE for files opened with FCreate or
FAppend.

Example:
FOpen(f, "infile.txt");
FCreate(f2, "newfile.txt");
WHILE NOT FEOF(f) DO

FRead(f, line);
FWrite(f2, line);

END;
FClose(f);
FClose(f2);

Odyssey Script Commands
FetchStr
FUNC FetchStr(Key:String;
 VAR s1,s2:String;
 [filename:String]):Flag;

This command searches a password file for an entry matching the key word "Key", and if found returns
two strings from that entry in the "s1" and "s2" parameters. The function returns TRUE if the key was
found, or FALSE if not. This command can be used for any purpose, but is primarily a safety feature
intended to allow you to avoid accidentally revealing passwords when sharing scripts. Note that this
feature is not intended to provide security against persons who have access to your PC. You are
encouraged to take your own precautions if you are worried by this prospect.

The FetchStr() command by default searches a file called "PASSWORD.ODY", but can be instructed to
search any other file by supplying the optional filename parameter. In any case, the file searched must be
a plain ASCII file laid out as several lines of the format:-

<key> = "string1" "string2"

For example:-

"BIX" = "bixid|" "password|"
"ANYBBS" = "John Smith|" "smithy|"

There should be at least one space on either side of the '=' symbol, and between the two strings to the
right. Extra spaces and blank lines between fields will be ignored. The first column is the key, one of
which should match the string passed in the "Key" argument to FetchStr(). If the key is found then the
two string fields which follow are returned in the two string variables. The example below assumes that
the sample password file shown above is used.

Note: Previous versions of Odyssey did not allow the key field of the password file line to be in
quotes. The preferred method in the current version is to put the key in quotes, although old format
password files are still accepted.

Example:

VAR Username,Password:String;

BEGIN
IF Dial("MICROP") THEN

IF FetchStr("MICROP",Username,Password) THEN
WaitFor("User name? ");
Transmit(Username);
WaitFor("Password? ");
Transmit(Password);

END;
END;

END;

Odyssey Script Commands
FFirst,FNext
FUNC FFirst(wildcard:String; s_attr:Number;
 VAR Filename:String;
 VAR f_attr:Number):Flag;
FUNC FNext(VAR Filename:String;
 VAR f_attr:Number):Flag;

These commands allow scripts to search DOS directories for files matching a known specification.

The FFirst() function calls DOS to search the directory according to the file specification passed in the
"wildcard" parameter. If files exist which match that specification then the function will return TRUE, and
the name of the first of the matching directory entries will be returned in "Filename", with its associated file
attributes returned in "f_attr" (see the description of the "s_attr" parameter).

The "s_attr" parameter allows you to control whether special files such as sub-directories will be included
in the search. The s_attr parameter is bit mapped, with bits assigned as follows:-

BIT Meaning
0 Include read-only files in the search.
1 Include Hidden files in the search.
2 Include System files in the search.
3 Search for the volume label.
4 Include subdirectory files in the search.
5 Return files with the archive bit set.

The normal attribute will be 0, which returns only normal files (not hidden or subdirectory entries). The
FileAttr value returned by a successful search uses this same bit mapping.

If the initial call to FFirst() succeeds in finding a matching file then remaining files can be found through
repeated calls to FNext(). This function returns TRUE if another matching file was found, and as before
the filename is returned in "Filename", with its attributes in "f_attr". The function returns FALSE if there are
no more files matching the original specification.

Example:
VAR got_file:Flag;

Filename:String;
fileattr:Number;

BEGIN
got_file := FFirst("*.txt",$03,

Filename,fileattr);
WHILE got_file DO

Write("Found file: ",Filename,"|");
got_file := FNext(Filename,fileattr);

END;
END;

Odyssey Script Commands
FGetPos
FUNC FGetPos(f:File):Long;

Given the handle of an opened file, this function returns the current position of the file read/write pointer
(seek pointer). This function was added because it was finally made possible by the introduction of the
new 'Long' data type.

Example:
fseekptr := FGetPos(f);
...
FSeek(f, fseekptr);

Odyssey Script Commands
FQualify
FUNC FQualify(filename:String):String;

This command takes a partially qualified filename and returns its fully qualified (unambiguous) equivalent,
eg.:-

fullname := FQualify("WINODY.EXE");

might assign "C:\ODYSSEY\WINODY.EXE" to fullname. This is useful if you want to change directories,
and don't want DOS to become confused as to where your file is.

Example:
Write("Please enter a filename: ");
Read(filename);
filename := FQualify(filename);

Odyssey Script Commands
FRead,FWrite
FUNC FRead(f:File; VAR s:String):Number;
FUNC FWrite(f:File; s1 {,sn} :String_or_Number):Number;

These commands allow a script to read or write to text files previously opened using the FOpen(),
FCreate() or FAppend() commands.

FRead() reads one text line from the file associated with the file handle "f", and assigns that line to the
string parameter. The line is expected to be CRLF terminated in the file, but the newline characters are
not preserved in the string read. The function returns a DOS error code which should be zero if there was
no error.

FWrite() writes one or more items to the file associated with the file handle "f". Each item may be a string
or number expression, and should be separated by commas. The FWrite command always adds a
newline code to the end of the list of items written, these therefore form one new line in the output file.
The function returns a DOS error code which should be zero if there was no error.

Examples:
FRead(f,s);
FWrite(f,s);
FWrite(f,"I am ",age," years old today.");

Odyssey Script Commands
FRename
FUNC FRename(oldname,newname:String):Flag;

This command renames the DOS file whose current name is passed in the "oldname" parameter to the
substitute name passed in the "newname" parameter. This command can also be used to move a file
from one directory to another, provided that both directories are on the same DOS drive. The function
returns TRUE if the command succeeded, or FALSE if not.

Examples:
FRename("today.log","yesterda.log");
FRename("\odyssey\bix.log","\old\bix.log");

Odyssey Script Commands
FSeek
PROC FSeek(f:File; pos:Long);

Given the handle of an opened file, and a file address relative to the start of that file, this function sets the
position of the read/write pointer (seek pointer) to that address. You should normally only use this function
on files you are reading, rather than files you are creating. This function was added because it was finally
made possible by the introduction of the new 'Long' data type.

Example:
fseekptr := FGetPos(f);
...
FSeek(f, fseekptr);

Odyssey Script Commands
FSize
FUNC FSize(f:File):Long;

Given the handle of an opened file, this function returns the size in bytes of that file. This function was
added because it was finally made possible by the introduction of the new 'Long' data type.

Example:
FOpen(f, "SESSION.LOG");
Write("Size of file = ", FSize(f),"|");
FClose(f);

Odyssey Script Commands
IsFile
FUNC IsFile(filespec:String):Flag;

This command allows a script to determine whether a file or directory exists or not. The function returns
TRUE if a file or directory exists whose name matches the "filespec" parameter (which may contain
wildcards). This function will not find hidden files.

Example:
IF IsFile("*.ZIP") THEN

...

Odyssey Script Commands
LastTransferredFile
FUNC LastTransferredFile():String;

This function returns the name of the last file transferred using one of the Odyssey file transfer protocols.
The result is not defined if you call this function before there have been any file transfers. A point to note
is that only the name of the last file transferred is available, so after a batch file transfer it is not possible
to determine names for all the files. This function is most useful if you transfer files one at a time and then
check the name.

Example:
IF Download(ZMODEM) THEN

filename := LastTransferredFile();
Write("File: ",filename," received ok.");

END;

Odyssey Script Commands
MkDir
FUNC MkDir(dir_name:string):Flag;

This command attempts to create the directory named in the "dir_name" parameter, and returns TRUE if
the attempt succeeded, or FALSE if not.

Example:
IF MkDir("\ODYSSEY\DOWNLOAD") THEN

Write("Download directory created.|");
....

Odyssey Script Commands
PickFile
FUNC PickFile(filespec:string; VAR filename:String):Flag;

This function gives you access to Odyssey's file selector dialog. You pass the function "filespec" which
would normally contain wildcard characters, and Odyssey will pop up the file selector dialog, showing all
the files which match that specification, allowing the user to select one of the files using the mouse or
keyboard.

The function returns TRUE if the user selected a file, or FALSE if the Cancel button was clicked or <Esc>
was pressed. If TRUE then the argument "filename" will contain the name of the file selected.

Example:
Write("Unpack which downloaded file? ");
IF PickFile("*.ZIP", zipfile) THEN

Write("Unpacking: ",zipfile,"|");
DOS("pkunzip "+zipfile);
....

Odyssey Script Commands
Shell
PROC Shell();

Obsolete. This command is not supported in the Windows version of Odyssey.

Example:
Shell();

Odyssey Script Commands
Dialing Commands
The commands listed below allow a script to control the Odyssey dial function. Please also see
Introduction to Script Dialing.

Dial
TagDirEntries
DialTagged
DialQueued
Example Dial Script

Odyssey Script Commands
Introduction to Script Dial Commands
Almost every script will have at least one call to a dial-related command in it. This makes dialing one of
the most important topics for the script programmer to understand and be confident about. When writing
the script you should be aware of the interaction of the dialing directory, directory tags, the dial queue, the
dialer itself, and Odyssey's configuration. This introduction will try to present that information.

Odyssey dials by stepping through and processing the entries in a dial queue. A number gets into that
queue in one of four ways.

· The user used the point and shoot dial method, ie. he highlighted a single entry in the directory and
pressed the Dial button (or just double-clicked on the entry). This produces a dial queue with a single
item in it.

· The user used the Tagged Dialing method, ie. he marked one or more entries in the directory, and
then clicked the Dial Tagged button. This produces a dial queue with multiple entries, depending on
the number of items which were tagged.

· A script called the Dial() command. This is the script equivalent of point and shoot dialing.

· A script called the TagDirEntries() command, followed by the DialTagged() command. This is how the
script manages tagged dialing.

Once the dial queue is generated, it is independant of the tags. The tags themselves stick until they are
manually removed, in other words they are not affected by the success or failure of a dial attempt. What is
affected by the dial attempt is the contents of the queue - when a connection attempt is successful the
appropriate telephone number is removed from the queue, otherwise it remains in the queue for a
possible future retry.

The dialing procedure is perhaps best understood by means of a few case studies.

Dial Queue with single entry. This is the simplest case. Here Odyssey would fetch the details of the
dialing queue entry, and dial the number. If the dialer fails to establish a connection it will redial, up to the
maximum number of redial attempts configured in the setup menu. If the dialer succeeds in establishing a
connection then Odyssey is automatically set up as per the dialing directory information and we go online
to the service.

Dial Queue with multiple entries. Odyssey will start by selecting the first number in the queue and will
dial that service. If it fails to connect Odyssey will pause for the inter-dial delay defined in setup, and will
then step to the next item in the queue. If there are no more items in the queue then Odyssey returns to
the first entry and redials. Notice that Odyssey does not persist with the first entry until it hits the
maximum redial limit, instead it steps immediately to the next entry and only returns to the first if every
other number in the queue also fails to connect. Odyssey will keep cycling around the numbers until either
a connection is made, or until each number has individually been redialed the maximum number of times.

There is another fact to consider: it is not enough for Odyssey simply to establish a connection with the
remote modem. It is not the modem the user wants to connect to, it is the host service or BBS that the
user is interested in, and a modem connection is no guarantee that the connection is serviceable. The
script must therefore have some way of abandoning the connection if it is bad, then connect via one of the
other numbers in the queue. In this case the script must not generate a new dial queue, since that queue
will be identical to the one previously generated, and will be very likely to establish a connection to the
same faulty modem. The script language therefore provides a way to continue dialing using a queue
previously generated, minus the entry which made the faulty connection (the latter is automatic - any
entry is removed from the queue on connection).

The remainder of this section will document the available script commands which control dialing.

Odyssey Script Commands
Dial
FUNC Dial(key:String):Flag;

This function asks the Odyssey Dialer to dial a number. The parameter "key" should match the key field of
a dialing directory entry, and causes Odyssey to generate a dial queue consisting of that single entry.
Odyssey then dials the number in accordance with the settings in that entry. The function returns TRUE if
the dial attempt succeeded, or FALSE if it failed.

An exception to the above rule arises when the script using the command was started from the dialing
directory, in which case Odyssey is already connected to a host and ignores the Dial() command,
returning TRUE to satisfy the script that the command succeeded. You can use this feature to attach the
same script to several dialing directory entries.

Examples:
success := Dial("MICROP");
IF Dial("MICROP") THEN

...

Odyssey Script Commands
TagDirEntries
FUNC TagDirEntries(Key:String;
 ClearOldTags:Flag):Number;

A script can take control of tagging dialing directory entries itself - it need not depend on the user to do so.
This command allows a script to "tag" all the entries in a dialing directory which have a particular key. If
"ClearOldTags" is TRUE then existing tags will be cleared first. This command may also be used to clear
tags without setting any new ones, by calling the command with ClearOldTags set to TRUE, and an empty
string "" as the key.

The function returns the total count of tagged entries in the directory after this operation. Calling this
function also clears the old dial queue.

Example:
IF TagDirEntries("MICROP",TRUE)=0 THEN

Write("No directory entries have key MICROP|");
END;

Odyssey Script Commands
DialTagged
FUNC DialTagged():Number;

After tagging directories entries, this command allows you to invoke the Odyssey queued dialing feature.
It does so by generating a dial queue consisting of all tagged entries, and then processing the dial queue.
The function returns an error code which will be 0 if a connection was made, otherwise error 1 means that
there were no tagged entries, and error 2 means that Odyssey dialed all numbers in the queue several
times (up to the maximum allowed), but still failed to establish a connection. If a connection is made
(return code 0) then the successful entry is removed from the dial queue, thereby allowing the script, if it
wishes, to return to other numbers in the queue after this call.

Example:
IF DialTagged()<>0 THEN (* all attempts failed *)

Write("No answer on any number|");
END;

See also: TagDirEntries().

Odyssey Script Commands
DialQueued
FUNC DialQueued():Number;

Sometimes a script will want to redial, even after a successful connection has been made via a call to
DialTagged() - for example, the connection may have been made to a "dead modem", ie. one that that
has lost its connection to the host. This function allows the script to continue with other numbers in the
dial queue, whereas calling DialTagged() again might well result in the same bad connection.

Like DialTagged(), this function returns an error code. In this case 0 indicates success, 1 indicates that
the dial queue was empty, and 2 means that Odyssey could not establish a connection with any number
in the queue, even after redialing.

Example:
IF DialQueued()<>0 THEN (* try another line *)

Write("No answer on any number|");
END;

Odyssey Script Commands
Example Dial Script
Queued dialing is a rather complex subject, so there follows a further example which puts the above
elements together to form a reasonably robust script dialing routine for a service with multiple access
numbers.

FuncLogin():Flag;

Var BBSok:Flag;
Id,Password:String;

Begin
ClrScr();
Write("|Calling BBS||");
IF FetchStr("BBS",Id,Password) THEN

IF TagDirEntries("BBS",TRUE)=0 THEN
Write("No directory entries have key BBS|");
RETURN FALSE;

END;
SetMaxRedials(4);
SetDialDelay(1);
IF DialTagged()<>0 THEN (* all dial attempts failed *)

Write("No answer on any BBS number|");
RETURN FALSE;

END;
BBSok:=FALSE;
REPEAT

IF WaitFor("login:",10) THEN
BBSok:=TRUE;

ELSE
HangUp(); (* drop the bad connection *)
IF DialQueued()<>0 THEN (* try another line *)

Write("No answer on any BBS number|");
RETURN FALSE;

END;
END;

UNTIL BBSok;
Paste("hostname");
WaitFor("user) "); Transmit(Id);
WaitFor("Password:"); Transmit(Password);
RETURN TRUE;

ELSE
Write("|Failed to find Id and Password.|");
RETURN FALSE;

END;
End; /* Login */

Odyssey Script Commands
Mode Control Commands
The following script commands allow you to examine and modify the Odyssey configuration from a script.

CanEscape
CRinTranslation,CRoutTranslation
Emulate
EventLogging
LocalEcho
LogFile
PrinterOff,PrinterOn
RestoreDefaults
SetASCII
SetAutoWrap
SetBackspace
SetCISB
SetDialDelay
SetDialingDir
SetDialPrefix
SetDialTimeout
SetDownloadDir
SetFlowControl
SetMaxRedials
SetRawLogging
SetScreenMode
SetSoundEffects
SetStripParity
SetZmodem

Odyssey Script Commands
CanEscape
PROC CanEscape(enable:Flag);

This command allows a script to enable or disable the users ability to cancel a script by pressing the
<Esc> key. A parameter of TRUE allows the <Esc> key to cancel a script, while FALSE disables this
effect. If the <Esc> key is pressed while cancellation is disabled then the key is treated like any normal
key press, ie. transmitted to the remote host.

Script programmers should realise that if the user's ability to cancel a script is disabled, then the user has
no way at all to stop a runaway script. You should therefore use the CanEscape() command only with
scripts which have been thoroughly tested.

Examples:
CanEscape(TRUE);
CanEscape(FALSE);

Odyssey Script Commands
CRinTranslation,CRoutTranslation
FUNC CRinTranslation(CR or CRLF):Number;
FUNC CRoutTranslation(CR or CRLF):Number;

These functions override the "CR xxx translation" options of the Setup|Terminal dialog. A parameter of CR
tells Odyssey to leave carriage returns unchanged, while CRLF tells Odyssey to convert an incoming (or
outgoing, in the case of CRoutTranslation) CR into a CRLF pair. Both functions return the previous setting
of the option as a numeric value, which can be used as a parameter in a later call to the function, to
restore the original setting.

Examples:
numvar := CrOutTranslation(CRLF);
CrOutTranslation(numvar);
CRinTranslation(CR);

Odyssey Script Commands
Emulate
FUNC Emulate(emulation:String):Flag;

This command is used to select a new terminal emulation in Odyssey; the emulation named must be
available in the Odyssey program files directory.

As well as loading the emulation, this command also causes a keyboard definition file to be loaded, if one
exists which matches the name of the terminal emulation file. The function returns TRUE if the emulation
was loaded, FALSE if it was not.

Example:
IF NOT Emulate("ANSI") THEN

Write("ANSI-BBS emulation not available.|");
Emulate("TTY");

END;

Odyssey Script Commands
EventLogging
FUNC EventLogging(enable:Flag):Flag;

This command is used to enable or disable the event logging feature. The "enable" parameter should be
"TRUE" to enable event logging, or "FALSE" to disable it. The function result is the previous setting of the
event logging option.

Example:
WasEnabled := EventLogging(TRUE);

Odyssey Script Commands
LocalEcho
FUNC LocalEcho(enable:Flag):Flag;

This function can be used to disable or enable local echo mode from a script. A parameter of TRUE
enables local echo, while a parameter of FALSE disables it. The function returns the original setting of the
Local Echo flag.

Examples:
old_echo := LocalEcho(TRUE);
LocalEcho(old_echo);

Odyssey Script Commands
LogFile
FUNC LogFile(Log_command; [filename:string]):Flag;

This command is used to control text logging from within an Odyssey script. The parameter
"Log_command" can be one of the following:-

· OPEN. Enable text logging to the file "filename", or to "ODYSSEY.LOG" if the filename parameter is
not supplied.

· CLOSE. Close the log file.

· SUSPEND. Cease logging temporarily, but leave the current log file open.

· RESUME. Resume logging after a suspension.

The function returns TRUE if the logging command was successful.

Examples:
LogFile(OPEN, "MYFILE.LOG");
LogFile(SUSPEND);
LogFile(RESUME);
LogFile(CLOSE);

Odyssey Script Commands
PrinterOff,PrinterOn
PROC PrinterOff();
PROC PrinterOn();

These commands are used to turn printer logging off and on. Note that in the Windows version of
Odyssey the logged text is not physically printed (submitted to the Windows print manager) until printer
logging is turned off.

Examples:
PrinterOn();
....
PrinterOff();

Odyssey Script Commands
RestoreDefaults
PROC RestoreDefaults();

A script which has used any of the Setxxxx mode control commands described in this manual section to
alter Odyssey setup options may wish to restore Odyssey to "factory defaults" before ending the script, so
that each script may begin from a known initial setup. This command is provided for that purpose. The
RestoreDefaults() command causes Odyssey to restore settings by reloading ODYSSEY.CFG, or by
using built-in Odyssey defaults if the config file does not exist. RestoreDefaults() does not however
reprogram the serial port.

Example:
RestoreDefaults();

Odyssey Script Commands
SetASCII
PROC SetASCII(CharDelay,LineDelay:Number;
 BlankExpansion:Flag);

This command allows a script to override the settings in the ASCII panel of the Setup|File transfer dialog,
the three arguments to this command corresponding to the three options in that panel. CharDelayis the
inter-character delay in milliseconds (0-9999), LineDelay is the inter-line delay in milliseconds (0-9999),
and BlankExpansion tells the ASCII upload routine whether or not blank lines should be replaced with a
line containing a single space, to be compatible with host editors which regard an empty line as being an
instruction to leave the editor. The latter argument should be TRUE or FALSE.

Example:
SetASCII(20,40,TRUE);

Odyssey Script Commands
SetAutoWrap
PROC SetAutoWrap(on:Flag);

Auto-wrap is the feature whereby Odyssey will automatically insert a carriage return into the input stream
when the cursor reaches the terminal right hand margin. This feature can be enabled or disabled in the
Setup|Terminal dialog, or may be overridden using this command.

Example:
SetAutoWrap(TRUE);

Odyssey Script Commands
SetBackspace
PROC SetBackspace(Key:Number; Destructive:Flag);

This command controls whether pressing the Backspace key produces either ASCII BS or DEL in VTxxx
terminal emulations. It affects the setting of the equivalent option in the Setup|Terminal dialog. The Key
parameter should be either 8 or 127 - other values are treated as meaning the same as 127. The
"Destructive" parameter is for future expansion, and is not currently used - you should pass FALSE as a
dummy parameter.

Example:
SetBackspace(8,FALSE);
SetBackspace(127,FALSE);

Odyssey Script Commands
SetCISB
PROC SetCISB(AutoInvoke,IntResponse,
 SAok,EscapeCtl:Flag);

This command allows a script to control the options which affect file transfer using the Compuserve B+
protocol. The parameters are equivalent to the options presented in the Compuserve B+ panel of the
Setup|File transfer dialog.

The following example tells Odyssey that Compuserve B+ auto-invoke is to be enabled, that it should
respond to the "interrogate sequence" issued by a Compuserve host, that it is ok to send-ahead (window)
during a CIS B+ session, and that control characters other than the default set should not be escaped
(quoted), unless demanded by the host.

Example:
SetCISB(TRUE,TRUE,TRUE,FALSE);

Odyssey Script Commands
SetDialDelay
PROC SetDialDelay(Secs:Number);

The "dial delay" is the time Odyssey pauses for between one dial attempt and the next, the intention of
which is to allow time for the modem to recover. The time required varies from modem to modem, with the
best modems requiring no delay at all. For safety however, Odyssey sets this delay to one second. A
script can override the configured value, using this command, to the number of seconds passed in the
parameter.

Example:
SetDialDelay(2);

Odyssey Script Commands
SetDialingDir
FUNC SetDialingDir(Filename:String):Flag;

This command allows a script to select an alternative dialing directory file, and returns TRUE or FALSE
depending on whether that file was found or not. The alternative dialing directory remains selected until
the Odyssey session ends, or until another dialing directory is selected. Passing an empty string "" to this
command is equivalent to selecting the default dialing directory file "ODYSSEY.DIR". Odyssey makes no
assumptions about where the alternate directory file may be found, so a full file path should be supplied.

Example:
IF NOT SetDialingDir("\ODYSSEY\ALTERNATE.DIR") THEN

Write("Couldn't find alternate dial directory.|");
END;

Odyssey Script Commands
SetDialPrefix
PROC SetDialPrefix(PrefixS:String);

The "dial prefix" is that part of the modem dial command which precedes the telephone number. Odyssey
knows about two dial prefixes, one each for tone and pulse dialing, plus Odyssey has an option in the
Setup|Modem (Dial Commands) dialog which tells it whether Tone or Pulse dialing is currently selected. If
tone dialing is selected then the SetDialPrefix() parameter will override the tone dialing prefix string. If
pulse dialing is currently selected then a call to this command will override the pulse dial prefix string.

Example:
SetDialPrefix("~|~ATDT");

Odyssey Script Commands
SetDialTimeout
PROC SetDialTimeout(Secs:Number);

The "dial timeout" is the time Odyssey allows, after sending a dial command, for the modem to establish a
connection. If this time period elapses without a successful connection, or a recognised failure string
having been received, then Odyssey will abandon the call itself. The SetDialTimeout() command
overrides the timeout value in the Setup|Modem dialog, making it the number of seconds passed in the
parameter.

Example:
SetDialTimeout(60);

Odyssey Script Commands
SetDownloadDir
PROC SetDownloadDir(dirname:String);

Sets the directory for downloads to that named in the "dirname" parameter. This command overrides the
equivalent option in the Setup|General dialog.

The directory for downloads is the directory in which Odyssey will place all files received from a remote
host using a file transfer protocol. Log files are also placed there.

Note that this command does not create the named directory. If you name a directory using this
command (or the menu option) then Odyssey assumes that the directory must already exist. If it doesn't
then you should create it first.

Example:
SetDownloadDir("C:\ODYSSEY\DOWNLOAD");

Odyssey Script Commands
SetFlowControl
PROC SetFlowControl(type);

This command allows a script to override the flow control setting configured in Odysseys Setup|Comms...
dialog.

The 'type' argument specifies the type of flow control required. Possible values are :-

NONE - Odyssey should not use flow control.

XONXOFF - Odyssey should use software (XON/XOFF) flow control.

RTSCTS - Odyssey should use RTS/CTS hardware flow control.

Examples:
SetFlowControl(NONE);
SetFlowControl(XONXOFF);
SetFlowControl(RTSCTS);

Odyssey Script Commands
SetMaxRedials
PROC SetMaxRedials(max:Number);

The "max redials" is the number of attempts Odyssey should make, after the first attempt, to dial a
number. The total number of dial attempts is therefore "max redials" plus one. The SetMaxRedials()
command sets the number of redials allowed, overriding the figure given in the Setup|Modem dialog.

Example:
SetMaxRedials(5);

Odyssey Script Commands
SetRawLogging
PROC SetRawLogging(on:Flag);

Odyssey has two text logging modes, "Raw" and "ASCII". ASCII logging mode means that Odyssey will
attempt to produce a log file which can be loaded into an ASCII-only text editor, ie. with control characters
and terminal control sequences removed. When raw logging however, these characters and sequences
are left intact. The SetRawLogging() command enables or disables Raw Logging mode, overriding the
option in the Setup|General dialog.

Example:
SetRawLogging(TRUE);

Odyssey Script Commands
SetScreenMode
PROC SetScreenMode(MenuLine,StatusLine,
 BigScreen:Flag);

Obsolete. This command is ignored in the Windows version of Odyssey.

Odyssey Script Commands
SetSoundEffects
PROC SetSoundEffects(reserved, Bells, FTransfer:Flag);

This command provides control over sound effects settings in the Setup|General dialog. The first
parameter is ignored in the Windows version of Odyssey. The second parameter tells Odyssey whether to
beep when the ASCII BEL character is received from the serial port, and the last parameter controls
whether Odyssey sounds an alarm when a file transfer completes.

Example:
SetSoundEffects(FALSE,TRUE,TRUE);

Odyssey Script Commands
SetStripParity
PROC SetStripParity(on:Flag);

Sometimes a user may wish to connect to a service which expects an eight bit, no parity link, using a low
cost network which expects a seven bit even parity link. This can cause problems. For example, if you
enable even parity to please the network you find that you cannot transfer files with the host. If you set no
parity, then you get strange garbage characters when you talk to the network. The secret is to use eight
bits no parity, but enable parity bit stripping. This command may be used to enable or disable the parity bit
stripping option, and overrides the option given in the Setup|Terminal dialog. You can also enable parity
bit stripping for a service using the dialing directory.

Example:
SetStripParity(TRUE);

Odyssey Script Commands
SetZmodem
PROC SetZmodem(AutoDownload,FullStreaming,
 EscCtrls:Flag);

This command allows a script to control the various Odyssey options which affect a Zmodem protocol file
transfer. The arguments to the command correspond to the options in Zmodem panel of the Setup|File
transfer dialog. AutoDownload, if true, enables the Odyssey feature whereby an incoming Zmodem file
header causes the file transfer to begin automatically. FullStreaming means that Odyssey does not
request the sender to insert pauses, which might be necessary if you are downloading to a very slow
floppy drive. EscCtrls may be necessary if you are using a network which is not completely transparent to
all control characters - the Zmodem protocol already escapes the most troublesome control characters
(eg. XON and XOFF), but the ultra cautious may wish to escape them all, which is what will happen if
EscCtrls is true.

Example:
SetZmodem(FALSE,TRUE,FALSE);

Odyssey Script Commands
Host Mode Commands
The script commands listed below are used in a script which implements a Host Mode for in with
Odyssey. See also Introduction

FileSize
GetHostInfo
HostShell
WaitForCall

Odyssey Script Commands
Introduction to Host Mode Scripts
Odyssey's host mode is implemented as a perfectly ordinary script, with a somewhat unusual name -
ODYHOST.HSC. When you select Answer (host) mode from the Odyssey Window menu all that
Odyssey really does is run this script. You could replace this script with one of your own if you liked, and
Odyssey wouldn't mind in the least. Odyssey doesn't care what the script does, or whether or not that
script is precompiled. All Odyssey looks for is a valid script file with the correct name, in the correct place.

A host mode script requires access to certain features which would be rather difficult to implement as
script procedures, and so Odyssey provides a few built in commands specifically designed to support host
mode. However, there is no requirement that a user written host mode script actually use these calls -
they are there if needed.

Printing the contents of ODYHOST.HSC should provide you with a good demonstration of the
requirements of a working host mode script.

Odyssey Script Commands
FileSize
PROC FileSize(f:File; VAR Bytes,Xblocks:String);

This command takes an opened file handle as the first parameter, and returns the size of the associated
file in Bytes and Xmodem blocks. Note that these are returned as strings, since the sizes are quite likely
to be larger than a Number variable can hold (this command predates the introduction of the Long type in
Odyssey). This command is intended to be used by a Host mode script, to inform a caller about the size
of a file he is about to download. In this situation it is not important that the script cannot express the file
size as a number.

Example:
FOpen(f,Filename);
FileSize(f,bytes,blocks);
FClose(f);
SendString("|File: "+Filename+"| "

+bytes+" bytes, ("
+blocks+" Xmodem blocks).|");

Odyssey Script Commands
GetHostInfo
PROC GetHostInfo(VAR NormPass, PrivPass,
 Welcome,HostDir:String;
 VAR MNPwanted:Flag);

This command allows a script to "ask" Odyssey for the settings in the Setup|Host mode dialog, and is
intended for use by Host mode scripts. A given script may choose to use or ignore these settings,
however where appropriate a host mode script should naturally try to do what the user expects.

Example:
GetHostInfo(NormPass,PrivPass,

Welcome,HostDir,MNPwanted);

Odyssey Script Commands
HostShell
PROC HostShell();

Obsolete. This command is no longer available in the Windows version of Odyssey (the compiler accepts
the command, but the command no longer works).

Odyssey Script Commands
WaitForCall
FUNC WaitForCall():Number;

The core of any host mode script will be the point at which the script waits for a call to arrive. This
command provides a simple way for that function to be carried out. The function returns 0 if a call has
been connected, 1 if escape was pressed on the host keyboard (ie. the owner of the host machine wants
to leave host mode), any other value is an error code indicating a failure to connect a call (currently there
should be no other result codes). If the Baud rate detection field is enabled in the Setup|General dialog
then the terminal speed will be automatically set to the actual connect speed before control returns to the
script.

Example:
CallResult := WaitForCall();

Odyssey Script Commands
Watching and Waiting Commands
These commands provide "watch for string" and "wait for string" facilities in the Odyssey script language.
See also Introduction.

WaitFor
WaitForSilence
WatchFor
Received
WatchAgain
ClrWatch
ClrAllWatches
When
WatchEvent
GrabWhen
ReadScreen

Odyssey Script Commands
Watching and Waiting - Introduction
Almost all scripts you write for Odyssey will centre around the need to recognise specific strings
transmitted by the host. These are usually prompts, and your script needs to respond to those prompts in
a particular way. Odyssey provides several different ways of looking for, and responding to such prompts.

The basic method of recognising a string is to use the WaitFor command. Using this command causes
the script to stop until the correct string arrives from the modem. However, using this method only allows
you to wait for one specific string at a time - this is not always appropriate, because certain situations are
bound to arise where you need to check for the arrival of one of several strings, without knowing in which
order, if at all, these strings are going to arrive. Odyssey script copes with these more complex
requirements through the use of a feature called "Watch Processes". This section will describe the basic
WaitFor command first, and will then devote the remainder to describing watch process commands.

Odyssey Script Commands
WaitFor
FUNC WaitFor(target:String [; t_secs:Number]):Flag;

This is the basic "wait for a string" command. The script will stop executing, and will not restart until either
the required string arrives, or until the timeout period expires. The timeout is optional, and if not specified
the WaitFor command will wait indefinitely. If a timeout is required then "t_secs" should pass the required
timeout period in seconds. The function returns TRUE if the string was received, or FALSE if it was not.
The FALSE result can only happen if the optional timeout was provided.

The script processor ignores case differences when deciding whether or not the string has been received.
For example, both "USER NAME" and "user name" would be accepted by the WaitFor commands given
as examples below.

Examples:
WaitFor("User name? "); -- wait indefinitely.
WaitFor("User name? ",10); -- time out in 10 secs.

Odyssey Script Commands
WaitForSilence
FUNC WaitForSilence(secs,max_wait_secs:Number):Flag;

This command is used when you want to give a host time to update the terminal display, before you issue
the next command ("silence" means a period when nothing is written to the terminal). The parameters are
"secs" - the number of seconds of silence to wait for, and "max_wait_secs", which is the maximum
number of seconds to wait for the required silent period. Use the latter to ensure that a script doesn't hang
forever if the modem starts generating a constant stream of noise. A "max_wait_secs" parameter of 0 tells
the script processor not to time out this command. The function returns TRUE if the required period of
silence was seen, false if the timeout expired first.

If there has already been more than "secs" seconds of silence prior to the WaitForSilence() call,
then a TRUE result will be returned immediately.

Examples:
WaitForSilence(5,0); -- expect 5 seconds of silence.
IF WaitForSilence(5,30) THEN...

Odyssey Script Commands
WatchFor
FUNC WatchFor(target:String):Number;

This command tells Odyssey to set up a process in the background which will watch whether the string
"target" ever arrives. The function returns a number (called a handle) which is used to identify this
process in calls to related functions. For example, in order to find out whether the string has been
received, you test function Received(handle).

It is important to realise the difference between calls to WatchFor() and WaitFor(). WaitFor()
waits for a single string, and the script is suspended until that string arrives. WatchFor() is a function
which tells Odyssey that you want to know when a particular string arrives, but having noted this fact the
script processor immediately proceeds to the next script statement.

You can have more than one string being watched for at any one time - up to thirty are allowed. If that
limit is exceeded then WatchFor() will return -1 as the identifying number of the next string.

Example:
VAR mailp:Number;

BEGIN
mailp := WatchFor("Mail:");

Odyssey Script Commands
Received
FUNC Received(handle:Number):Flag;

This function is used to test whether a particular string associated with a watch process has arrived yet.
The handle is as returned in a previous call to WatchFor(). This function returns either TRUE (yes, the
string has been received), or FALSE (no, it has not).

As usual, differences of case (upper or lower) are ignored in deciding whether a particular string has been
received.

Examples:
got_mail := Received(mailp);
IF Received(mailp) THEN

....

Odyssey Script Commands
WatchAgain
PROC WatchAgain(handle:Number);

Normally, once a WatchFor() string has been received, calls to the Received() function will return TRUE
evermore. This procedure resets the received attribute of a particular string (identified by the handle
returned by WatchFor). This means that if a watch process has been set up and a string received, then
you can instruct Odyssey to look for another occurrence of the same string.

Example:
WatchAgain(mailp);

Odyssey Script Commands
ClrWatch
PROC ClrWatch(handle:Number);

This command cancels the watch process associated with this handle. The handle is freed up and may be
reallocated by future calls to WatchFor().

Example:
ClrWatch(mailp);

Odyssey Script Commands
ClrAllWatches
PROC ClrAllWatches();

This command cancels all currently executing watch processes. All handles are made available for reuse.

Example:
ClrAllWatches();

Odyssey Script Commands
When
FUNC When(s1:String; s2:String):Number;

This command is a specialised variant on a watch process. The function accepts arguments s1 (a string
to watch for), and s2 (a string to send to the remote host when s1 is received). The transmission of s2 is
automatically handled by Odyssey. A When() call counts as a call to WatchFor() - one handle from the
maximum of 30 allowed is allocated to this task (the function returns the handle number allocated). Calls
to ClrWatch() may be used to cancel individual When() processes, and a call to ClrAllWatches() will
cancel all watch processes, including the When() variants.

Example:
When("more?","y|");

Odyssey Script Commands
WatchEvent
FUNC WatchEvent(handle1, {,handleN} : Number;
 [timeout:Number]):Number;

This function takes one or more (ie. a variable number) of arguments, each of which is a handle returned
by a previous call to the WatchFor() function. A timeout may also be supplied, and this is described later.
This function suspends the script until one of the strings associated with the listed handles is received,
and the function then returns the handle of the received string. For example:-

apple := WatchFor("Apple");
orange := WatchFor("Orange");
lemon := WatchFor("Lemon");

CASE WatchEvent(apple,orange,lemon) OF

apple:Write(" -- Keeps the Doctor away|");
| orange:Write(" -- It's Juicy, Ma!|");
| lemon:Write(" -- Suck it and see...|");

END;

Another technique is to assign the WatchEvent() result to a variable, so that the script can use its
knowledge of which handle was satisfied, i.e. :-

Handle := WatchEvent(apple,orange,lemon);
WatchAgain(Handle); (* prime watch process again *)
CASE Handle OF
(* ... etc *)

If a timeout is specified it must be as a number constant (ie. not a variable), and it must be as the last
argument to the function. The number is a timeout in seconds. The following is an example of the function
in use:-

mainw := WatchFor("Main:");
readw := WatchFor("Read:");
mailw := WatchFor("Mail:");
LostCarrier := FALSE;
REPEAT

CASE WatchEvent(mainw,readw,mailw,30) OF

mainw:Write("[Got MAIN prompt]");
| readw:Write("[Got READ prompt]");
| mailw:Write("[Got MAIL prompt]");
| TIMEOUT:Write("[30 seconds are up!]");
| NOCARRIER:Write("[Script lost carrier]");

LostCarrier:=TRUE;
END;

UNTIL LostCarrier;

Note the constants TIMEOUT and NOCARRIER which can be used as labels to test the result of the
WatchEvent() call. These labels can also be used in other expressions, such as:-

IF WatchEvent(mainw,readw,30)=TIMEOUT THEN...

or again:-

num := WatchEvent(mainw,readw,30);
IF num = TIMEOUT THEN...

The NOCARRIER test is not optional, in other words a carrier loss will always cause
WatchEvent() to terminate, and good practice should dictate that you test for this possibility as in the
above code.

Odyssey Script Commands
GrabWhen
FUNC GrabWhen(Target:String; VAR line:String):Number;

Sometimes it is useful to be able to capture data from the incoming stream of text, and to do that you
need to start recording characters at the right time. This function provides you with the means to do this
easily. It watches for a string which you specify, and when it sees that string it copies the remainder of the
incoming line which contained that string into a string variable.

The first argument to this function is the string to watch for, and the second argument is the string variable
into which the resulting line is to be stored. The latter must be a global string variable - local string
variables will not be accepted because of the possibility that the procedure scope which activated
GrabWhen() may be no longer active when the process is satisfied, a mistake which would cause the
script processor to mangle its stack.

This routine is another variant on a "watch" process, and the function result is a handle for the watch
process, as per WatchFor() and When(). The usual rules for watch variants apply, ie. a call to
GrabWhen() counts as a use of WatchFor(), and one of the maximum 30 watch processes is allocated.
You can use the Received() function to test whether the process has been satisfied. For this variation on
WatchFor() the "received" attribute is set only after the string has been seen, and the line has been
copied.

You may use the handle returned by GrabWhen() in calls to WatchEvent(), WatchAgain(), ClrWatch() and
Received(), and a call to ClrAllWatches() will also cancel any GrabWhen() processes still running.

Example:
mailp := GrabWhen("You have mail from ", userid);

Odyssey Script Commands
ReadScreen
PROC ReadScreen(x,y,len: Number):String;

Not, strictly speaking, a watching command, but it is normally used in that context, so we have
documented it in this section. This command reads a string directly off the terminal display, where X and Y
are the screen coordinates (0-79,0-<height-1>), and LEN is the number of characters to copy. If you use
an illegal x,y or a zero length then an empty string will be returned. The copied string is returned in the
function result.

This command is intended to be used in situations where the normal watching and waiting commands are
not suitable. For example, when using ANSI emulation it is quite possible that a string you can see on the
screen will not be seen by a WaitFor(), because of invisible control characters or terminal control
sequences embedded in the string (if the string uses more than one color then this must have happened).
On the other hand, ReadScreen() "sees" exactly what you do - so it is possible to read the string right off
the screen, compare it with what you expect, and thereafter proceed as you would have done with
WaitFor().

Example:
MyStringVar := ReadScreen(2,2,30);

Odyssey Script Commands
DLL Commands
These commands are provided to allow a script to communicate with Odyssey DLLs.

LoadDLL
SendMessage
UnloadDLL

See also: Introduction

Odyssey Script Commands
Introduction to DLL Commands
DLLstands for Dynamically Linked Library. Odyssey terminal emulation, file transfer protocol, editor
and FAX modules are all implemented as DLLs, that is, as separate semi-independant programs which
are loaded and unloaded as required. DLLs are quite similar to the more old fashioned overlay schemes,
except that DLLs are more efficient - they have more to do with memory organisation than with memory
economisation.

Skyro Software hopes to add many optional modules in the form of add-on DLLs to Odyssey in the future.
Rather than being forced to augment the script language to add specific support for the features of each
module every time one appears, we have decided to add a generic, message based support, though at
the moment the FAX module is the only one which recognises messages sent from a script, as of this
writing (see Fax Server Script Interface).

Odyssey Script Commands
LoadDLL
FUNC LoadDLL(DLLname:String):Number;

Function LoadDLL loads a named DLL module into memory, and returns a handle which will be used to
reference that module in future calls. This is analagous to a file open call. The "DLLname" parameter
should be the name of the DLL, including the extension, but not including the path (the DLL is assumed to
reside in the Odyssey home directory).

For example, to open the FAX server DLL, the command would be:-

fax_dll := LoadDLL("FAXSERV.DLL");

Where "fax_dll" is the returned DLL handle. This handle variable can in fact be called anything you like,
provided you have declared it as a number variable earlier in your script. You should check the returned
handle value - if it is less than 16 then an error has occurred, otherwise it is a valid DLL handle.

At the moment, error codes are defined as follows, however you should treat any return value less than
16 as an error. :-

0 = DLL file not found.
1 = File is not a DLL
2 = Insufficient memory to load DLL.
3 = Too many active DLLs
4 = DLL failed to initialise correctly.
5 = same as 4.

Odyssey Script Commands
SendMessage
FUNC SendMessage(dll_handle: Number;
 Command:String;
 VAR str_arg:String;
 num_arg:Number
):Number;

This is how you send messages to a DLL. The "dll_handle" argument identifies the DLL which is to
receive the message. The "Command" argument is a string which names the command to be performed.
The "str_arg" parameter is a string argument for the DLL command (note that it must be a variable), and
num_arg is a numeric argument for the DLL command. The interpretation of the string and numeric
command arguments (or even if they are used) will depend on the command issued, and will be
documented along with the command. Unless otherwise noted in the command description, the
SendMessage() result code should generally be interpreted as 0=success, while <>0 indicates an error.

Examples:
SendMessage(fax, "PRINT", "myfax.fax 1-99", 0);
SendMessage(fax, "SET-DETAIL", "", 1);

Odyssey Script Commands
UnloadDLL
FUNC UnloadDLL(dll_handle: Number):Number;

This function is the inverse of LoadDLL() - it causes a DLL to be discarded from memory, after which you
should not send it any further messages. The return value is 0 if the call was successful, 1 if the handle
was invalid (you should however treat any non zero result as an error code).

For example, to unload the FAX server DLL, the command should be:-

fax_dll := UnloadDLL(fax_dll);

This form of the call is recommended, since it has the effect of invalidating the DLL handle variable in your
script, as well as just unloading the DLL. This means that the Odyssey internal code will safely intercept
any further attempts to use the handle.

Odyssey Script Commands
Windows API Access Commands
The topics below describe the Windows API access commands provided by the Odyssey script language.

Introduction
Accessing any function in a DLL
LoadResourceLibrary, FreeResourceLibrary
LoadDialog
GetDialogMessage
EndDialog
GetDlgItemInt
GetDlgItemText
SetDlgFocus
CheckDlgButton
CheckRadioButton
DlgDirList
DlgDirListComboBox
GetDlgCtrlID
GetDlgItem
IsDlgButtonChecked
SendDlgItemMessage
SetDlgItemInt
SetDlgItemText
MessageBox
LoadMenu
DestroyMenu
AssignMenu
CreateToolBar
AssignToolBar
DestroyToolBar
AssignStatus
SetStatusField
WinHelp
FindWindow
SetWindowText
MessageBeep
GetFocus
GetOdyWindow
GetModuleHandle
WinSendMessage
WinPostMessage

Odyssey Script Commands
Introduction to Windows API Support
This section of the Odyssey Script Language Help system outlines how an experienced Windows
programmer may access Windows™ API features from the Odyssey script language. This document does
not attempt the huge task of documenting the Windows API. Interested novices should look in any good
bookshop for the Windows SDK programming manuals, published by Microsoft Press.

The Windows Odyssey script language has been extended (relative to the DOS version of Odyssey) in
order to allow script authors to create and use Windows style dialog boxes, menus, toolbars and status
lines. For experienced programmers, Odyssey provides a mechanism whereby an Ody script can call any
function exported by a Windows DLL.

Odyssey script is not an application level programming language, so it is not possible for a script to
animate a dialog in precisely the same manner one would use in a standard Windows application written
in C or Pascal, we do however come pretty close. Most of the differencies lie in how a dialog is loaded
and initialized. The main differences are:-

· A true Windows application generally binds resources (definitions of dialog box templates, menu
layouts etc), into the executable file of the application. Odyssey scripts are not executable files as far
as Windows is concerned, so this step is not possible. In order to use such resources a programmer
must create the various dialog and menu templates, and then bind them into a resource-only DLL.
The Odyssey script must load that DLL using a call to the new script function LoadResourceLibrary()
before it can animate any resource in that library. If a dialog box uses any custom controls then the
custom control library will also have to be loaded by the script. A script should unload any resource
libraries it has used by calling FreeResourceLibrary() before the script terminates. A demonstration
resource-only DLL called DEMODLG.DLL is provided with Odyssey, along with a demonstration script
called TESTDLG.SRC which shows how to access and use those resources.

· You cannot write any kind of callback function using the Odyssey script language (particularly: you
can't write a dialog callback function). Instead, in the case of dialogs Odyssey provides the required
callback function internally, which provides a buffer for API messages between Windows and the
script. Scripts retrieve the next buffered API message by calling the new GetDialogMessage()
function.

Note that since Windows API messages are buffered (ie. not received by the script at the time they
were sent), that a script cannot handle any message which receives data passed as a pointer in one
of the message arguments, eg. you can't use data objects pointed to the lParam argument. A script
can however send messages which pass pointers to data.

An Odyssey script which wants to have the Windows "look and feel" should create a dialog which will
form the core of the user interaction with the script. This then allows the script to make use of script
language features which make it possible to associate menus, toolbars and status lines with that dialog
(ie. associated objects which are displayed whenever the dialog is the active window), allowing the script
to almost completely supplant the normal Odyssey user interface.

Note that Odyssey does not currently provide utilities for actually creating the resources mentioned -
these must be created using third party tools, eg. any standard Windows programming language from one
of the usual vendors (Microsoft, Borland etc).

Borlands Resource Workshop utility is particularly useful for this, since it is capable of reading,
modifying and writing resources directly to and from a DLL - a script author could thus use the supplied
DEMODLG.DLL as a skeleton to be modified to his requirements, using Resource Workshop. Without
Resource Workshop (or another resource editor with similar features) the script programmer would have
to mess with resource compilers, DLL stub code sections, linkers and so forth.

A typical step-by-step process for a script which uses Windows resources would be :-

1. Load the resource library(s) needed.
2. Load the dialog
3. Load any menus/toolbars/status lines required, and assign them to the dialog.
4. Animate the dialog until the user clicks a close button.
5. Call EndDialog() and wait until the dialog is closed.
6. Discard the menus/toolbars etc which were loaded.
7. Discard the resource library(s) which were used.

The demo script TESTDLG.SRC shows how to carry out all of the above steps.

The script using the new WinAPI features should include the file "windows.inc" so that it has access to the
message constants used in the examples below, ie. the script should have the line :-

#include "windows.inc"

near the beginning of the script source. Note that "windows.inc" is not a complete rendition of the
"windows.h" shipped with most C compilers. Instead, we have included what we think are the most useful
constant definitions of those which a script is likely to need. If however you discover a need for a constant
which is missing from this file, then by all means feel free to add that constant definition yourself. Or
perhaps even better - create an extention include file with your extra constants, to avoid our "windows.inc"
becoming as unmanageably large as the standard version.

Odyssey Script Commands
Accessing any function in a DLL
This section describes a new script language mechanism which allows an experienced programmer to
call any function exported by a DLL. This includes standard Windows DLLs, or any function in a DLL
available to the script programmer. This gives the script programmer access to the complete Windows
API, and it also opens the possibility of sharing the work of a script between the script and a user-written
DLL, where the DLL handles the complex and/or time consuming part of the work.

All you need to do to access any DLL function is declare a "prototype" for that function in the script. This
feature puts tremendous power in the hands of the script programmer, but also tremendous responsibility.
Calling the wrong function, or the right function with the wrong arguments can quite easily cause a global
protection fault, or hang the system.

All you need to know in order to declare the prototype is the module name or file name of the DLL that
exports the function, the name or ordinal number of the function, and the arguments that the function
expects.

The Function Prototype

Here is a sample function prototype; this one provides access to the Windows API function
GetSystemDirectory() :-

 VAR hKernel:Number;

 FUNC GetSystemDirectory(VAR sysdir:String; cbMax:Number):Number
 = CALLDLL[hKernel];

In other words, the FUNC line is a standard function header which you might see prior to the body of any
user written script function. However, instead of a function body we have the "=
CALLDLL[module_handle]" directive, which tells the Odyssey script processor that this is really a DLL
function, and also says where to find it (in the DLL whose module handle is stored in the 'hKernel' integer
variable). Once this prototype is declared, the function may be called just like any other script function,
provided that the hKernel variable is initialized before the first call. A number of such function prototypes
could very usefully be packed together in an include file (however: let us please not go down the road of
everything-plus-the-kitchen-sink being declared in a single include file!).

The Module Handle

The module handle (eg. hKernel) must be a global number variable, and it must be initialized before you
can call any DLL function which references that module. The initialization can take two forms, eg :-

 hKernel := GetModuleHandle("KERNEL");

or :-

 hKernel := LoadResourceLibrary(
 "C:\WINDOWS\SYSTEM\KRNL386.EXE");

You should use the first initialization method when you know that the DLL is already resident in memory
(eg. because it is one of the standard Windows system DLLs such as "KERNEL", "GDI" or "USER").

You use the second initialization method when you think the DLL may not be in memory already (don't
worry about the DLL being loaded twice: Windows itself prevents that happening, and merely increments

a usage count on the second or later load request). If you load a module into memory using
LoadResourceLibrary() then you should remember to call FreeResourceLibrary() on that module handle
before the script terminates (this simply decrements the usage count if the module was already loaded).

Note: You only need to initialize a module handle once, regardless of the number of functions
which reference it. Also, note that the module handle is the same as the 'hRes' handle we have previously
been using to access resources in a DLL.

A Sample Script

The following is a more complete version of the above example, showing both the module-handle
initialization, and the function call.

 SCRIPT DLLCallDemo;

 VAR hKernel:Number;

 (*...*)

 FUNC GetSystemDirectory(VAR sysdir:String; cbMax:Number):Number
 = CALLDLL[hKernel];

 (*...*)

 VAR SysDir:String;

 BEGIN
 hKernel := GetModuleHandle("KERNEL"); (* init module handle *)

 GetSystemDirectory(SysDir, 80); (* call function! *)
 Write('Windows system directory is "',SysDir,'".|');
 END;

CALLDLL Directive with an 'Alias'

The preceding examples used the simplest form of the CALLDLL directive, which will also be the most
common form. However, there are certain variants of the directive which you may need to use in unusual
circumstances.

If you want the name of the function, as known to the script processor, to be different from the name of
the function as known to Windows, then you can use the following version of the CALLDLL directive :-

 FUNC GetSysDir(VAR sysdir:String; cbMax:Number):Number
 = CALLDLL[hKernel,"GETSYSTEMDIRECTORY"];

as you can see, there is an optional second argument to the CALLDLL directive which supplies the name
of the function as it is known to Windows. Your script then uses calls to "GetSysDir" throughout, but the
script processor translates these into calls to GETSYSTEMDIRECTORY. Essentially, 'GetSysDir' is an
alias for 'GETSYSTEMDIRECTORY'. You might use this form of the directive if, for example, the name of
the DLL function clashes with the name of an existing Odyssey script command. Note that if you don't
include this alias directive then Odyssey assumes that the DLL function has the same name that you
have declared in the FUNC line (except that Ody forces the name to all upper case before passing it to
Windows, which is compliant with the 'pascal' calling convention typically used by an exported DLL

function).

CALLDLL Directive with Function Ordinal Number

One important fact not mentioned so far is that if you use the standard or 'alias' forms of the CALLDLL
directive, then Odyssey assumes that the function involved has been exported by name from the DLL -
with the name being either the name of the Odyssey function, or the alias name. However, if the function
is exported by ordinal number, or you only know the ordinal number and not the name, then you can use
the following variant of the CALLDLL directive :-

 FUNC GetSystemDirectory(VAR sysdir:String; cbMax:Number):Number
 = CALLDLL[hKernel,135];

In other words, the syntax is just like the 'alias' variant, but uses an integer constant (the ordinal) instead
of the function name. Using the ordinal value may also be more efficient than retrieving the function by
name on every call. The SDK tool EXEHDR can be used to obtain the ordinal numbers of exported
functions in a DLL.

Calling DLL Functions using the C Calling Convention

Most exported DLL functions (including all but one Windows API function), use the 'Pascal calling
convention'. This means that the calling program pushes function arguments on the stack from left to
right, and the called function has responsibility for popping those arguments off the stack.

However, some DLL functions (such as the Windows API function "wsprintf"), use the C calling
convention, in which the caller pushes the arguments in order from right to left, and is responsible for
cleaning up the stack afterwords.

If you want to call a "C calling convention" function from an Odyssey script, just declare the prototype
using the CALLDLL_C directive instead of the CALLDLL directive. Apart from the name change, the
CALLDLL_C directive has identical syntax (including options). For example :-

 FUNC wsprintf2(VAR s:String; szFormat:String; a,b:Number)
 = CALLDLL_C[hUser,"_WSPRINTF"];

Note that the 'alias' directive must be used if the function name needs a preceding underscore. Note also
that although you can call a "c calling convention" function from an Odyssey script, you cannot get a
function prototype to accept a variable number of arguments, or to accept arguments of unknown type.

Limitations of the CALLDLL Mechanism

Although you can access any DLL function, you naturally cannot use any language features which the
script language does not support. In particular, if the DLL function requires you to install a callback
function then you are stuck: the script language does not and cannot create a callback function (you could
however write your own service DLL and declare the callback there...).

Another problem is DLL functions in which one or more of the arguments are pointers to a array or
structure. The Ody script language does not currently provide array or structured types. However, you can
often get around this limitation by declaring a sequence of variables in which the sequence has the same
format as the structure you wish to emulate, and then you pass the address of the first variable in the
sequence (or simply declare the argument as VAR), in leu of the structure address. For example, if for
some reason you wanted to call the "User" function GetClientRect() - which expects an LPRECT

argument - you could simulate it as in the following example :-

 SCRIPT DLLCallDemo;

 VAR hUser:Number;

 (*...*)

 PROC GetClientRect(hWnd:Number; VAR dummy:Number)
 = CALLDLL[hUser];

 (*...*)

 VAR left,top,right,bottom:Number; (* RECT structure *)

 BEGIN
 hUser := GetModuleHandle("USER"); (* init module handle *)

 GetClientRect(GetOdyWindow(), left);
 Write("Ody client window width = ",right,".|");
 Write("Ody client window height = ",bottom,".|");
 END;

A similar trick can be used to simulate array arguments, if the array doesn't need to be too large.

Odyssey Script Commands
LoadResourceLibrary, FreeResourceLibrary
FUNC LoadResourceLibrary(module_name:String):Number;
PROC FreeResourceLibrary(hRes:Number);

These functions allow a script to load and unload resource DLLs. A handle to a resource DLL is required
before a script can load dialog, menu and toolbar templates.

The LoadResourceLibrary() function attempts to find the "resource only DLL" whose name is passed in
<module_name>. If the DLL is found and successfully loaded then the function returns a handle (similar
to a file handle), which is used to identify the resource library when you need to extract an individual
resource (eg. when you call the LoadDialog() function). If the return value from LoadResourceLibrary()
is less than 32 then an error has occurred, and the return value is the error code (this is the same error
code returned by the LoadLibrary() standard Windows API function).

The FreeResourceLibrary() function discards a resource DLL identified by hRes, which is the handle
returned by a previous call to LoadResourceLibrary(). It is good practice for a script to explicitly unload
any DLLs it loads, although Odyssey does in fact unload such DLLs automatically when the script
terminates.

Examples:
hRes := LoadResourceLibrary("c:\winody\demodlg.dll");
.....
FreeResourceLibrary(hRes)

Odyssey Script Commands
LoadDialog
FUNC LoadDialog(hRes:Number; szDlgName:String;

x,y:Number):Number;

This function is used to load a dialog template, and is described in detail below. Note that menus, toolbars
etc are associated with a particular dialog handle, hence you must create a dialog before you can load a
menu, toolbar or status line. Also, you must have obtained a resource library handle before you can read
a dialog from that library (see LoadResourceLibrary()).

Note that script dialogs (except for MessageBox dialogs) are always modeless, ie. top level menus and
toolbar buttons are still active when the dialog is active. This means that you must ensure that
WM_COMMAND identifiers and accelerator keystrokes used by menus and dialog controls do not clash
(script dialogs must be modeless since Odyssey must be able to run other tasks within Odyssey while a
script is running, which is not possible with a modal dialog).

The LoadDialog() function attempts to read a dialog template with the name <szDlgName> from the
resource DLL identified by <hRes>, which is the handle returned by a previous call to
LoadResourceLibrary. If successful, the function creates and displays the dialog at coordinates (x,y)
pixels relative to the Odyssey MDI desktop origin, and returns a dialog (window) handle. The script should
immediately enter its GetDialogMessage() loop to retrieve the WM_INITDIALOG message which will
already have been placed in the dialog message queue.

The function returns 0 if the resource handle was invalid, or if the dialog name did not match any dialog
template stored in the resource DLL.

The script dialog manager checks the x,y coordinates passed. If x or y are negative, then the dialog is
displayed at a default x or y position on the screen. If x or y are so large that the dialog would be
completely or partially off the screen, then the dialog manager adjusts the x or y coord so that the right or
bottom edge of the dialog is aligned with the right or bottom of the Odyssey desktop area.

Example:
hDlg := LoadDialog(hRes,"TESTDLG",-1,-1);

Odyssey Script Commands
GetDialogMessage
FUNC GetDialogMessage(

hDlg:Number;
VAR iMsg,wParam:Number;
VAR lParam:Long):Flag;

This function is used to wait for messages being sent to the dialog identified by the <hDlg> handle.
GetDialogMessage() is intended to be called from within a loop, as in the example shown below. If no
message is available for the given dialog then the script goes to sleep until one becomes available. The
function returns FALSE when the dialog is closed, ie. after EndDialog() is called.

Example:

WHILE GetDialogMessage(hDlg,iMsg,wParam,lParam) DO
CASE iMsg OF
| WM_INITDIALOG:

SetDlgItemText(hDlg,IDD_TEXT0,myText);
(* plus any other initialization required. *)

| WM_COMMAND:
CASE wParam OF
| IDD_MYBUTTON:

DoNestedDialog();
| IDOK:

EndDialog(hDlg, 1);
| IDCANCEL:

EndDialog(hDlg, 0);
END;

END;
END;
RETURN wParam;

Odyssey Script Commands
EndDialog
PROC EndDialog(hDlg, retValue:Number);

This procedure is very similar to the Windows API function of the same name. It does not cause the dialog
<hDlg> to be destroyed immediately, instead it simply sets a flag which Odyssey sees the next time
GetDialogMessage() is called, at which point the dialog is destroyed, and the GetDialogMessage()
function returns FALSE, ending the dialog loop.

The value retValue is copied to the wParam argument of the final GetDialogMessage() call. This allows
the dialog loop to pass a result back up to the outer function (note the RETURN line in the example
given).

See GetDialogMessage() for an example of this command in use.

Odyssey Script Commands
GetDlgItemInt
FUNC GetDlgItemInt(hDlg,idControl:Number;

VAR x:Number):Flag;

This function is much like the Windows API function of the same name, but the arguments are organised
in what is hopefully a slightly more convenient arrangement (particularly: no need to declare an
'lpTranslated' boolean variable in order to receive the success/failure indication).

Given a dialog window handle <hDlg> returned by a previous call to LoadDialog(), and the ID number of a
control in that dialog <idControl>, this function reads the text in an edit control, translates it into an integer,
and returns the integer in the <x> variable. The function returns TRUE on success, or FALSE if the edit
control string contained illegal characters.

Example:

 IF GetDlgItemInt(hDlg, IDD_NUMCTRL, x) THEN
 Write("x = ",x,"|");

Odyssey Script Commands
GetDlgItemText
FUNC GetDlgItemText(hDlg,idControl:Number;

VAR s:String):Number;

This function is much like the Windows API function of the same name, but the arguments are organised
in what is hopefully a slightly more convenient manner (in particular: the standard API function has an
extra parameter giving the length of the destination string, which we don't need because the script
compiler automatically handles string overflow checks).

Given a dialog window handle <hDlg> returned by a previous call to LoadDialog(), and the ID number of a
control in that dialog <idControl>, this function reads the text in an edit control, and returns it in the <s>
variable. The function returns 0 on failure, else it returns the length of the string copied into <s>.

Example:

 len := GetDlgItemText(hDlg, IDD_MYTEXTCTRL, s);

Odyssey Script Commands
SetDlgFocus
PROC SetDlgFocus(hDlg, idControl:Number);

Given a dialog window handle <hDlg> returned by a previous call to LoadDialog(), and the ID number of a
control in that dialog <idControl>, this function sets the current focus to that control. The control with the
current focus is the one which receives keyboard input.

Example:

 SetDlgFocus(hDlg, IDD_FIRSTCTRL);

Odyssey Script Commands
CheckDlgButton
PROC CheckDlgButton(hDlg, idButton, uCheck:Number);

This procedure is used to set the "checked" state of a check button control. <hDlg> is returned by a
previous call to LoadDialog(), and identifies the dialog containing the control, <idButton> is the number of
that control (assigned when the dialog template was created), and <uCheck> is the intended check state
(0=unchecked, 1=checked, 2 is used only for three-state check buttons, and sets the alternate checked
state).

Example:

 CheckDlgButton(hDlg, IDD_CHECKBOX, TRUE);

Odyssey Script Commands
CheckRadioButton
PROC CheckRadioButton(

hDlg, idFirstButton,
idLastButton,
idCheckButton:Number);

This procedure is used to select (check) a single button in a group of radio buttons, while at the same
time deselecting all the other buttons in the same group. The button group must have a contiguous range
of identifiers. <hDlg> is returned by a previous call to LoadDialog(), and identifies the dialog containing
the radio button group. <idFirstButton> is the number identifying the first button in the group, while
<idLastButton> identifies the last button in the group. <idCheckButton> identifies the button which is to be
selected - that button is checked, and all other buttons in the group are unchecked.

Example:

 CheckRadioButton(hDlg,IDD_FIRST,IDD_LAST,idButton);

Odyssey Script Commands
DlgDirList
FUNC DlgDirList(
 hDlg:Number;
 VAR Path:String;
 idListBox, idStaticPath, uFileType:Number
):Number;

This function is used to fill a listbox with a list of file or directory names. Note that the Windows API
assumes that a dialog requiring this function has at least these three elements :-

· The listbox control itself, to display the list of files.
· An "Edit" control, where the user enters the file name he wants to select.
· A "static text" control, where Windows displays the current path (ie. the directory from which the files

currently in the listbox are extracted).

The parameters to the DlgDirList() function tell the Windows API which files you want to list, and also
gives it the IDs of the listbox and static text controls mentioned. The programmer calls DlgDirList() to fill
the listbox, and then fills in the edit control with a string passed back in the Path variable.

<hDlg> is the return value from a previous call to LoadDialog(), and identifies the dialog box containing
the listbox control. <Path> is a string containing a wildcard - these are the files you want listed.
<idListBox> is the ID of the listbox control, idStaticPath is the ID of the static text control which will receive
the path string, and uFileType is a bit mask which specifies the type of files/directories which are to be
listed. The uFileType argument can be a combination (bitwise OR) of the following values declared in
"windows.inc" :-

DDL_READWRITE- List read-write files with no special attributes.
DDL_READONLY- List read-only files.
DDL_HIDDEN- List hidden files.
DDL_SYSTEM- List system files.
DDL_DIRECTORY- List directories.
DLL_ARCHIVE- List files which have their "archive" bit set.
DDL_DRIVES- List drives.
DDL_EXCLUSIVE- If this option is included then only files with the specified attributes are listed,

otherwise files with the specified attributes are listed in addition to ordinary
read/write files.

It is VERY IMPORTANT to note that <Path> is a variable! When this string is passed to Windows,
it should contain the complete directory path and file specification, eg. "C:\WINODY\DOWNLOAD*.ZIP".
Windows will remove the path part of this specification and copy it to the static text control, returning the
tail part of the specification (ie. "*.ZIP") back in the Path variable, which the programmer then assigns to
the edit control.

The return value from DlgDirList() is non-zero if the function was successful, otherwise it is zero.

Odyssey Script Commands
DlgDirListComboBox
FUNC DlgDirListComboBox(
 hDlg:Number;
 VAR Path:String;
 idComboBox, idStaticPath, uFileType:Number
):Number;

This function is used to fill a combo-listbox with a list of file or directory names, otherwise this function is
identical to DlgDirList(). Note that the Windows API assumes that a dialog requiring this function has at
least these three elements :-

· The combobox control itself, to display the list of files.
· An "Edit" control, where the user enters the file name he wants to select.
· A "static text" control, where Windows displays the current path (ie. the directory from which the files

currently in the combobox are extracted).

The parameters to the DlgDirListComboBox() function tell the Windows API which files you want to list,
and also gives it the IDs of the combobox and static text controls mentioned. The programmer calls
DlgDirListComboBox() to fill the listbox of the combobox control, and then fills in the edit control with a
string passed back in the Path variable.

<hDlg> is the return value from a previous call to LoadDialog(), and identifies the dialog box containing
the combobox control. <Path> is a string containing a wildcard - these are the files you want listed.
<idComboBox> is the ID of the combobox control, idStaticPath is the ID of the static text control which will
receive the path string, and uFileType is a bit mask which specifies the type of files/directories which are
to be listed. The uFileType argument can be a combination (bitwise OR) of the following values declared
in "windows.inc" :-

DDL_READWRITE- List read-write files with no special attributes.
DDL_READONLY- List read-only files.
DDL_HIDDEN- List hidden files.
DDL_SYSTEM- List system files.
DDL_DIRECTORY- List directories.
DLL_ARCHIVE- List files which have their "archive" bit set.
DDL_DRIVES- List drives.
DDL_EXCLUSIVE- If this option is included then only files with the specified attributes are listed,

otherwise files with the specified attributes are listed in addition to ordinary
read/write files.

It is VERY IMPORTANT to note that <Path> is a variable! When this string is passed to Windows,
it should contain the complete directory path and file specification, eg. "C:\WINODY\DOWNLOAD*.ZIP".
Windows will remove the path part of this specification and copy it to the static text control, returning the
tail part of the specification (ie. "*.ZIP") back in the Path variable, which the programmer then assigns to
the edit control.

The return value from DlgDirListComboBox() is non-zero if the function was successful, otherwise it is
zero.

Odyssey Script Commands
GetDlgCtrlID
FUNC GetDlgCtrlID(hWnd:Number):Number;

Given the handle of a child window (eg. a control in a dialog box), returns the ID number of that control.
The function returns 0 if the window handle was invalid.

Example:
 idCtrl := GetDlgCtrlID(hWndCtrl);

Odyssey Script Commands
GetDlgItem
FUNC GetDlgItem(hDlg,idControl:Number):Number;

Given a dialog window handle <hDlg> returned by a previous call to LoadDialog(), and the ID number of a
control in that dialog <idControl>, returns the window handle of that control. The function returns 0 if the
dialog handle or control ID was invalid.

Although intended for use with dialogs, this function actually works with any window which owns child
windows - provided you have the handle of the parent window, and the ID of a child window, you can
obtain the window handle of the child (the TESTDLG.SRC demo script uses this trick to get the handle of
Odyssey's MDI client window).

Example:
 hWndCtrl := GetDlgItem(hDlg, IDD_MYBUTTON);

Odyssey Script Commands
IsDlgButtonChecked
FUNC IsDlgButtonChecked(hDlg,idControl:Number):Flag;

This function returns TRUE if the button control with ID <idControl> in the dialog <hDlg> is selected
(checked). Otherwise it returns FALSE.

Example:
 IF IsDlgButtonChecked(hDlg, IDD_BTN) THEN

Odyssey Script Commands
SendDlgItemMessage
FUNC SendDlgItemMessage (
 hDlg, idControl, iMsg, wParam:Number;
 lParam:Long
):Long;

This function is used to send Windows API messages to a child control in a dialog. The function is actually
a shortcut for the following :-

WinSendMessage(GetDlgItem(hDlg,idControl),
 iMsg,wParam,lParam);

In other words, it is precisely the same as WinSendMessage(), except that it is specialised towards
sending messages to children of a known parent window, ie. controls in a dialog.

Odyssey Script Commands
SetDlgItemInt
PROC SetDlgItemInt (
 hDlg, idControl, uValue:Number;
 fSigned:Flag
);

Given a dialog window handle <hDlg>, and the ID number of a control in that dialog <idControl>, this
function sets the text of that control to the string representation of the value <uValue>. The <fSigned> flag
indicates whether <uValue> is to be treated as signed or unsigned.

Odyssey Script Commands
SetDlgItemText
PROC SetDlgItemText(
 hDlg, idControl:Number;
 s:String
);

Given a dialog window handle <hDlg>, and the ID number of a control in that dialog <idControl>, this
function sets the text of that control to the contents of the string <s>.

Odyssey Script Commands
MessageBox
FUNC MessageBox (
 hWndParent:Number;
 text, title:String;
 style:Number
):Number;

This function allows access to the Windows API function MessageBox(). <hWndParent> is the handle of
the window which should inherit the focus when the message box dialog closes, <text> is the message to
display in the message box, and <title> is the caption to give to the message box.

The <style> value controls what icon and buttons will appear in the message box. Various constants are
declared in "windows.inc" which you should 'OR' together to give the message box the appearance you
want it to have. The constants are described below :-

· Include one of the these constants to select the icon which will appear in the message box -
MB_ICONEXCLAMATION, MB_ICONINFORMATION, MB_ICONQUESTION, MB_ICONSTOP.

· Include one of these constants to select the range of buttons you want to have in the message box -
MB_ABORTRETRYIGNORE, MB_OK, MB_OKCANCEL, MB_RETRYCANCEL, MB_YESNO,
MB_YESNOCANCEL

· Include one of these buttons to override which button is initially highlighted - MB_DEFBUTTON1,
MB_DEFBUTTON2, MB_DEFBUTTON3. The default is MB_DEFBUTTON1.

The function return value indicates which button the user clicked in order to close the dialog. The value is
either IDABORT, IDCANCEL, IDIGNORE, IDNO, IDOK, IDRETRY or IDYES, depending on which button
types were enabled, and which one was clicked.

All of the constants mentioned are declared in "windows.inc", which you must include in any script that
uses them.

Example:

 IF MessageBox(GetFocus(),
 "Try that again?", "Demo",
 MB_ICONQUESTION+MB_YESNO)=IDYES THEN
 /* do whatever it was again */
 END;

Odyssey Script Commands
LoadMenu
FUNC LoadMenu (
 hRes:Number;
 szMenuName:String
):Number;

This function is used to load a Windows menu template from the resource only DLL identified by the
<hRes> argument, which should be the return value from a previous call to LoadResourceLibrary().
<szMenuName> is the name of the menu resource in the resource library. Note that the menu is only
loaded, not activated.

The function result is a handle which should be used to identify the menu in calls to DestroyMenu() and
AssignMenu(), or 0 if the resource handle or menu name was invalid.

Please note that items in menus loaded by a script MUST use menu command identifiers in the range
1000-1199 so that Odyssey can distinguish messages coming from a script menu from those coming from
its own menus. Menu WM_COMMAND messages with ID values in the stated range are forwarded to the
script - other values are not.

Also, since Odyssey is an MDI application, all top level menus, including menus loaded by a script, MUST
contain a Window submenu. The Window submenu typically contains commands for tiling and cascading
MDI children, and for arranging iconic children. The demo script TESTDLG.SRC shows how to implement
these Window menu functions. Odyssey also adds MDI child titles to the Window menu so that users can
select document windows from the menu, which is why the Window submenu must exist.

A script which uses this menu function must not also use the old script language Menu()
command, as the two features are not compatible.

Odyssey Script Commands
DestroyMenu
PROC DestroyMenu(hMenu:Number);

Destroys the menu identified by the menu handle, which was returned by a previous call to LoadMenu(). If
DestroyMenu() destroys the currently active menu, then Odyssey will switch to the standard terminal
window menu before destroying the script menu.

Odyssey Script Commands
AssignMenu
PROC AssignMenu (
 hDlg, hMenu, iWindowPopup:Number
);

AssignMenu() creates an association between the dialog window <hDlg> and the menu handle <hMenu>.
In other words, that menu will be displayed whenever the associated dialog window is the active window.
<iWindowPopup> is the index of the Window menu in the scripts menu template, where 0 is the index of
the first submenu (typically the File submenu), 1 is the index of the second submenu (typically the Edit
submenu) and so on.

<hMenu> may be 0, in which case Odyssey reverts to displaying the menu which is normally displayed
when the terminal window is active. The value of <iWindowPopup> is ignored in this case.

 Note: A menu object may be assigned to more than one dialog window, and therefore is not
automatically destroyed when the dialog is destroyed. Menu objects loaded by a script are destroyed
automatically when the script which loaded it terminates, however you should consider it good practice to
destroy menus explicitly, within the script.

Odyssey Script Commands
CreateToolBar
FUNC CreateToolBar (
 hRes:Number;
 szBitmapName:String;
 nButtons:Number;
 ButtonIDs:String
):Number;

This function creates a toolbar object which is derived from a bitmap resource read from the resource-
only DLL identified by <hRes>, which should be the return value from a previous call to
LoadResourceLibrary(). <szBitmapName> is the name of the bitmap resource.

Odyssey creates a toolbar containing <nButtons> buttons, and paints the surface of each button with a
different "mini-icon" taken from a portion of the bitmap. The bitmap should consist of a grid of these mini-
icons, each of which should be 19 pixels wide by 17 deep, plus a one pixel border to the right and bottom
of each icon. The border should normally be white, however if you make the right-border of an icon light
red (RGB(255,0,0) - palette index 9 on the standard system palette), then Odyssey will insert a gap
between this button and the next - allowing the script to visually separate groups of related icons.

There should be a maximum of 5 icons in one bitmap row (ie. the bitmap is 100 pixels wide), though you
may have any number of icon rows. Icons are extracted from the bitmap in order from left to right, top to
bottom and each is then assigned in turn to a toolbar button. The bitmap should be 16-color, and should
use only the standard system colors.

Note: The demonstration resource DLL "DEMODLG.DLL" contains a sample toolbar source
bitmap which might give you a clearer idea of how the bitmap should be arranged.

A script dialog handler function is notified of a toolbar button press via a WM_COMMAND message, with
a button ID in the wParam argument. The wParam ID of each button is set using the <ButtonIDs> string
argument shown above. The string should look something like this :-

 "1001[help text1],1002[help text 2],1003[help text 3]"

ie. the string should contain <nButtons> button IDs, each separated by a comma. Note that the button
ID's should be distinct, ie. there should be no controls in the dialog or in a menu with the same ID as a
toolbar button, unless the toolbar button is intended to have the same meaning as the dialog button or
menu item. The text inside the square brackets (if present) is used to implement the "tool tips" feature,
whereby if you leave the mouse cursor over a toolbar icon, a little yellow window appears containing a
brief description of the purpose of the icon (a couple of words at most please). The latter is not intended
to provide exhaustive help information, it exists solely to provide a text alternative to the icon, if the user
doesn't immediately understand the purpose of the icon.

Note that CreateToolBar() only loads the toolbar into memory. The toolbar is not activated until it is
assigned to a dialog window with AssignToolBar().

The function result is a handle which should be used to identify the toolbar in calls to DestroyToolBar()
and AssignToolBar(). The function result is zero if the <hRes> argument was invalid, or if the named
bitmap was not found.

Odyssey Script Commands
AssignToolBar
PROC AssignToolBar (
 hDlg, hToolBar:Number
);

AssignToolBar() creates an association between the dialog window <hDlg> and the toolbar handle
<hToolBar>. In other words, that toolbar will be displayed whenever the associated dialog window is the
active window.

<hToolBar> may be 0, in which case Odyssey reverts to displaying the toolbar which is displayed when
the terminal window is active.

Note: A toolbar object may be assigned to more than one dialog window, and therefore is not
automatically destroyed when the dialog is destroyed. Toolbars created by a script are destroyed
automatically when the script that created it terminates, however you should consider it good practice to
destroy toolbars explicitly, within the script.

Odyssey Script Commands
DestroyToolBar
PROC DestroyToolBar(hToolbar:Number);

Frees the memory associated with a toolbar object created by CreateToolBar(). The toolbar handle is
invalid after this call.

Note: A toolbar object may be assigned to more than one dialog window, and therefore is not
automatically destroyed when the dialog is destroyed. Toolbars created by a script are destroyed
automatically when the script that created it terminates, however you should consider it good practice to
destroy toolbars explicitly, within the script.

Odyssey Script Commands
AssignStatus
FUNC AssignStatus (
 hDlg:Number;
 StDefStr:String
):Number;

Function AssignStatus() is very similar to the old script language command SetHelp() (which is still
supported). The difference is that whereas the old status lines were a single 'stack' shared by all windows
in Odyssey, this new feature associates an independant stack of status lines with a particular window.
Whenever that window is active, the status line most recently added to its stack is displayed. This function
also allows a script to make use of the 'Windows Style' status lines which are split into fields which can be
independantly updated.

AssignStatus() creates a status line and assigns it to dialog <hDlg>, meaning that this status line is
displayed whenever <hDlg> is the active window, unless deleted or superceded by a later status line.
Script dialogs which don't call AssignStatus(), or which delete all the status lines they've assigned, share
the status line that the Ody terminal window uses.

<StDefStr> is a 'picture string' which defines how the status line will look. It should contain one or more
fields of the form '[nn]ttttt' where 'nn' is the width of a status line cell in units of average char widths, and
'ttttt' is the text which will initially appear in that cell. The text may be omitted if the cell should initially be
empty. The final cell on the status line may have a width of zero, which means that the cell occupies the
remainder of the width of the status line. If the status line contains no '[width]' fields, then StDefStr is
assumed to contain the text of a status line consisting of a single, full width cell. The function returns a
handle for the new status line, which should be used in calls to SetStatusField().

Like SetHelp(), if StDefStr is an empty string then the status line most recently assigned to the dialog is
destroyed, in which case the function returns the handle of the status line which was previously on top of
the stack, or 0 if all status lines assigned to the dialog have been destroyed. Again like SetHelp(), groups
of characters in the text of a status cell may be surrounded by curly brackets, {like this}, in which case the
enclosed characters are highlighted, ie. painted in a different color.

Example:
 AssignStatus(hDlg, "[20]One[0]Two");

The above example sets a status line with two cells, the first of which is 20 AvCharWidths wide, with the
second cell occupying the remainder of the width of the status line. The text in the two cells is 'One' and
'Two'.

Odyssey Script Commands
SetStatusField
PROC SetStatusField (
 hStatus:Number;
 nField:Number;
 szText:String
);

This command is used to update a single cell in a status line. This procedure can be called at any time,
whether or not the dialog which owns the status line is the active window, and regardless of whether
hStatus is the current status line displayed for that dialog.

<hStatus> identifies the status line to be updated, and should be the return value from a previous call to
AssignStatus(). <nField> is the number of the status field (cell) to update, 0 being the number of the first
cell. <szText> is the text to display in that cell.

Odyssey does very little parameter validation on the hStatus handle you pass to this command,
and might crash if you call this command with an invalid hStatus, eg. when hStatus is not a status line
handle, or when hStatus has already been deleted.

A status line is automatically deleted when the window which owns it is destroyed.

Odyssey Script Commands
WinHelp
FUNC WinHelp (
 HelpFn:String;
 fuCommand:Number;
 dwData:Long
):Flag;

This function is identical to the Windows API function WinHelp(), except that the first argument (the main
application Window handle) is missing from the Ody script version. The latter is supplied by Odyssey
when it forwards this call to the Windows API. The function returns TRUE on success.

An Odyssey script language programmer must use third party tools to create the Windows .HLP file which
WinHelp() attempts to read.

Odyssey Script Commands
FindWindow
FUNC FindWindow (
 szClassName, szCaption:String
):Number;

This function is identical to the Windows API function of the same name, except that you cannot pass
NULL as an argument (however, passing an empty string "" provides equivalent functionality).

FindWindow() searches for a top level Window which has the given class name or caption, returning a
window handle, or 0 if the window was not found. One of the arguments may be an empty string, meaning
that any window matching only the other argument will be accepted. This function is intended to be used
to find the main Window of other applications, so that a script can post messages to it. You could also use
this function to find the handle of the Odyssey window, but that kind of nasty trickery is not encouraged!
This function does not search through child windows.

Odyssey Script Commands
SetWindowText
PROC SetWindowText(hWnd:Number; s:String);

Sets the caption of the window identified by the handle <hWnd> to the text contained in string variable
<s>. If hWnd identifies a child window such as a static text or edit control then SetWindowText sets the
text in the control.

Odyssey Script Commands
MessageBeep
PROC MessageBeep(uAlert:Number);

Call this procedure to sound a beep note on the PC speaker. The <uAlert> argument can be 0, or one of
the MB_ICON... constants defined for the MessageBox() function - different alert numbers supposedly
sound different notes, but Windows doesn't implement that feature unless you have a fancy sound board
installed, or a non-standard speaker driver.

Odyssey Script Commands
GetFocus
FUNC GetFocus():Number;

Returns the handle of the window which currently owns the input focus.

Odyssey Script Commands
GetOdyWindow
FUNC GetOdyWindow():Number;

Returns the handle of the Odyssey application window. This may be used by scripts which need to post
messages to Odyssey.

Odyssey Script Commands
GetModuleHandle
FUNC GetModuleHandle (
 modname:String
):Number;

Returns the module handle of a module which Windows already knows about (eg. "GDI"). Note that
<modname> is a runtime module name and not a file name. The function result is the HMODULE of the
module, or zero if Windows could not find the module in memory.

Odyssey Script Commands
WinSendMessage
FUNC WinSendMessage (
 hWnd, iMsg, wParam:Number;
 lParam:Long
):Long;

This function is identical to the Windows API function SendMessage(), but has a different name because
the Odyssey script language already has a built in command called SendMessage().

Odyssey Script Commands
WinPostMessage
PROC WinPostMessage (
 hWnd, iMsg, wParam:Number;
 lParam:Long
);

This function is identical to the Windows API function PostMessage(), but has a different name for the
sake of symmetry with WinSendMessage().

Odyssey Script Commands
Miscellaneous Commands
The script commands listed below do not fit well into any specific category.

Address
AllowYield
ASC
CHR
Date,Time
DEC,INC
Delay
DTESpeed
Exit
GetEnv
GetCallInfo
Halt,HaltE
IntToStr,StrToInt
IsDirKey
Length
LogEvent
OdyVersion
Pos
Priority
SetTimer,TimerExpired
SilentMode
StrEdit
SubStr
ToLower,ToUpper

Odyssey Script Commands
Address
FUNC Address(VAR obj:AnyType):Long;

Many Windows API messages expect you to pass a far pointer to a variable (usually a string) in the
lParam argument of SendMessage() or PostMessage(). This would previously have been impossible to
do using Odyssey script language, which provided no method of determining the address of a variable.
The Address() function fixes that problem. Note that the return value is a long, so may be used directly in
the Ody script language equivalent of the message passing function - WinSendMessage() or
WinPostMessage(). Please note that messing with the address value could cause a Protection Fault in
Windows.

Example:

 s := "A new string for a listbox";
 hWndList := GetDlgItem(hDlg, IDD_LISTBOX);
 WinSendMessage(hWndList, LB_ADDSTRING, 0, Address(s));

Odyssey Script Commands
AllowYield
PROC AllowYield(yieldOK:Flag);

AllowYield() allows the programmer to prevent the script from yielding to other tasks (including other
internal Ody tasks and other Windows apps), while a time critical section of script is running.

Background:

Applications running under Windows 3.x are cooperatively multitasked, that is, they must explicity yield
CPU time in order to allow other tasks to run. Odyssey normally runs a script as a low priority background
task, allowing it to run for a few p-code instructions, and then the script is suspended while other Odyssey
windows are updated, and also so that Ody can do its duty to Microsoft, by yielding CPU time to other
applications.

Odyssey uses two forms of yield, referred to here as a "short yield" and a "long yield". A short yield is
when Odyssey gives some CPU time to Windows (calls PeekMessage a few times), but doesn't explicitly
suspend the script or give any time to other internal tasks within Odyssey. A long yield is when Odyssey
suspends the script, updates other Odyssey windows, checks online clocks etc, and gives CPU time to
Windows.

Odyssey usually usually yields in these circumstances :-

a) If the script calls a command which involves waiting for some external event, then the script is
suspended until that event occurs. Commands in this category are :

Delay- Script suspended until timer expires.
Edit- Script suspended until edit window closes.
GetDialogMessage-Script suspended until dialog msg arrives.
RdKey- Script suspended until key is pressed while terminal window has the focus.
Sleep- Script suspended until carrier drops.
Transmit- Script suspended until transmission is completed (note that this doesn't

happen with Paste).
WaitFor- Script suspended until string arrives, or timeout expires.
WaitForSilence- Script suspended until required silent period is seen, or timeout expires.
WatchEvent- Script suspended until one of the listed events is triggered.

b) Odyssey normally executes a "short yield" whenever the script calls one of the built-in script
commands (the DOS version of Ody didn't yield at this point - this change was added to give
more CPU time to Windows).

c) If Priority() is TRUE, Odyssey does a long yield whenever the script calls function KeyPressed().
If Priority() is false, then the script also yields when it calls Received().

Certain situations may arise in which a script programmer wants to prevent Odyssey from yielding for a
while, for example :-

i) The script might be adding a lot of entries to a listbox control. If Odyssey yields to Windows every
time you call SendDlgItemMessage() then it may take a long time to fill that listbox.

ii) If the script is posting messages to another application, it may want to ensure that several
messages are posted before it yields control to allow the other application to read the first of
those messages from its input queue - especially if each message involves some screen
repainting.

All of the above was a preamble to describing the new AllowYield(flag) command. If you call
AllowYield(FALSE) then Odyssey will not do the "short yields" mentioned when you call a built in
procedure. This allows you to (for example) update that listbox more quickly in case (i) above. You should
(as quickly as possible) perform the high priority task you need to perform, and then call
AllowYield(TRUE), to let other tasks get some CPU time. Note that calls to AllowYield() may be nested,
ie. if you call AllowYield(FALSE) five times, then you must call AllowYield(TRUE) five times to enable
CPU yields again.

Note that regardless of the state of AllowYield(), Odyssey will still suspend the script in the cases listed in
(a) above.

: AllowYield() gives a script programmer more than enough rope to hang himself - this power
must not be abused! It is unacceptable for a script to call AllowYield() as a matter of course, simply to
make the script run faster. Doing so would mean that other applications, and other tasks inside Odyssey,
get no CPU time at all; their message queues would undoubtedly fill up, and Windows will certainly crash.
You should use AllowYield(FALSE) only to bracket small sections of time critical code, or where it is
important not to yield (as in (ii) above), and remember to call AllowYield(TRUE) as soon as possible. Be
especially careful not to do an early return from a function which calls AllowYield(FALSE), unless it calls
AllowYield(TRUE) before the return.

Odyssey Script Commands
ASC
FUNC ASC(s:String; i:Number):Number;

This function returns the ASCII code of the character at position i in the string s. The first character in any
string has a position of 0. For example, ASC("ABCDEF",1) should return 66, the ASCII code of the letter
'B'.

Example:
Write("ASCII code of 'C' is ",ASC("C",0));

Odyssey Script Commands
CHR
FUNC CHR(n:Number):String;

This function returns a one-character string, the one character being that which has the ASCII code n. For
example, CHR(66) should return the string "B". The character need not be printable, but must not be
ASCII code zero, as CHR(0) is reserved for use as the string terminator. This function is probably most
useful in string expressions, as in the example given below.

Example:
Write(CHR(27)+"[2J"); -- clear VT100 screen.

Odyssey Script Commands
Date,Time
FUNC Date():String;
FUNC Time():String;

These commands can be used to obtain the current date and time from Windows. The Date() function
returns the current system date as a string formatted as dd-mmm-yyyy, for example "09-Sep-1993". The
Time() function returns the current system time as a string, formatted as hh:mm:ss, for example
"21:51:09".

Ideas: You can use these commands to time stamp log files, or you could use them to write a script which
executes at the same time every day using some code such as:-

WHILE Time()<>"18:30:00" DO
(* wait for right time *)

END;

Another hint is that you can convert the time string to a number using StrToInt(), but only if you truncate
the string to the first five characters (ie. four digits), otherwise the number will overflow, eg. :-

the_time := Time();
the_time := SubStr(the_time,0,5);
time_num := IntToStr(the_time);

this is written for clarity, not efficiency. You could actually write it as a one-liner.

Example:
time_num := IntToStr(SubStr(Time(),0,5));

Odyssey Script Commands
DEC,INC
PROC DEC(VAR n:Number [; amount:Number]);
PROC INC(VAR n:Number [; amount:Number]);

These commands are provided for incrementing and decrementing numbers. These commands are more
efficient and concise than the equivalent assignment statement such as:-

a := a+1;

An optional second parameter may be supplied which is the amount the number should be incremented
or decremented by. If this parameter is not provided then a default of one is assumed.

Examples:
INC(a);
DEC(a);
INC(a,4);
DEC(a,2);

Odyssey Script Commands
Delay
PROC Delay(secs:Number);

This command causes a script to pause for the number of seconds passed in the "secs" parameter. The
script resumes when this time has expired.

Example:
Delay(3);

Odyssey Script Commands
DTESpeed
FUNC DTESpeed():Number;

This function returns the current DTE speed, ie. the speed at which the terminal is currently
communicating with the modem.

Example:
Write("Current baud rate is ",DTESpeed());

Odyssey Script Commands
Exit
PROC Exit();

This command allows a script to cancel itself, i.e. the script is terminated and Odyssey returns to terminal
mode. This command would typically be used when a fatal error is detected.

Example:
IF NOT Dial("ANYBBS") THEN

Write("Service not available.|");
EXIT();

END;

Odyssey Script Commands
GetEnv
PROC GetEnv(varname:String; VAR value:String):Flag;

This command searches for and returns (if it exists) a DOS environment variable named in the varname
parameter. The function returns TRUE if the variable exists, or FALSE if it does not. The value of the
variable is returned in the "Value" string. For example:-

IF NOT GetEnv("COMSPEC",CmdName) THEN
Write("Command Processor name not defined!!|");

END;

COMSPEC is a standard DOS environment variable found on most DOS machines. It tells DOS (and
other programs) where the command interpreter is located. After the call shown above the CmdName
variable will most likely contain "C:\COMMAND.COM", although this depends on your system
configuration.

Odyssey Script Commands
GetCallInfo
FUNC GetCallInfo(VAR ServiceName:String;
 VAR Connect_Speed:Number;
 VAR Key:String):Flag;

A multi-purpose script which makes use of queued dialing will probably want to know which service it
succeeded in connecting to. This function allows the script to get that information. The function returns
FALSE if no connection was established, otherwise "ServiceName" is the name of the service as it
appears in the dialing directory, "Connect_Speed" is the connect speed the modem reported (not
necessarily the same as the current DTE speed), and "key" is the directory entry key.

Example:
IF Dial("ANYBBS") THEN

GetCallInfo(Service,Connect,Key);
Write("Service is: ",Service,"|");
Write("Connect speed is: ",Connect,"|");
Write("Directory key is: ",Key,"|");

END;

Odyssey Script Commands
Halt,HaltE
PROC Halt();
PROC HaltE(return_code:Number);

These commands are like EXIT, in that they allow a script to cancel itself, with the exception that the
HALT commands also close the Odyssey application, with control returning to Windows.

The HALT() command simply halts Odyssey as described above. The HaltE() command is similar, but
allows you to set a return code for a calling application to pick up. The value of the return code should be
between 0 and 255.

Examples:
Halt();
HaltE(2); -- return error code = 2.

Odyssey Script Commands
IntToStr,StrToInt
PROC IntToStr(n:Number; VAR s:String);
PROC StrToInt(s:String; VAR n:Number);

These commands provide number to string conversion and vice versa. IntToStr converts the number "n"
to ASCII form and stores it in the string variable "s". StrToInt takes a string containing a number in ASCII
form and returns that number in the variable "n".

Examples:
IntToStr(45, numstr);
StrToInt(numstr, x);

Odyssey Script Commands
IsDirKey
FUNC IsDirKey(Key:String):Flag;

This command allows a script to determine whether an entry with a given key is present in the dialing
directory or not. A robust script can therefore interrogate the directory for the correct entries before it
enters its login routines. The function returns TRUE if "key" identifies a dialing directory entry, or FALSE if
it does not.

Example:
IF NOT IsDirKey("ANYBBS") THEN

Write("To run this script you need to have|");
Write("an entry in your Dialing Directory|");
Write("with a key of ANYBBS.|");
EXIT();

END;

Odyssey Script Commands
Length
FUNC Length(s:String):Number;

This function returns the length in characters of the string passed in the "s" parameter.

Example:
Write("Please enter a filename: ");
Read(Filename);
IF Length(Filename)>8 THEN

Write("The filename cannot be longer than|");
Write("eight characters.");
RETURN FALSE;

END;

Odyssey Script Commands
LogEvent
PROC LogEvent(s:String);

This command causes the string 's' to be recorded in the event log file (ODYSSEY.REC), provided that
event logging is enabled. Odyssey prepends a date and time, and appends CRLF, otherwise the string is
recorded exactly as you pass it.

Example:
LogEvent("Description of Event");

Odyssey Script Commands
OdyVersion
FUNC OdyVersion():String;

This function returns a string containing the current Odyssey version number, eg. "2.00". You can use this
function to ensure that the Odyssey version being used is compatible with any assumptions made in your
script.

Example:
IF OdyVersion()<>"2.00" THEN

Write("Warning: This script requires...");
....

Odyssey Script Commands
Pos
FUNC Pos(substring,s:String):Number;

This command searches the string "s" for the substring specified in the first parameter. If found then the
function returns the character position of the substring in the second string. For example (where x is a
number variable) :-

x := Pos("World", "Hello, World!!");
Write(x,"|");

would display "7" (the first position is zero). If the substring is not found then the Pos function returns
minus one.

This command has suffered from a minor bug since it was first introduced. The bug is that,
contrary to most other script commands involving string comparison, the Pos() command is case
sensitive. Unfortunately, several users have discovered this and have written scripts which depend on this
undocumented operation; so rather than fix the bug, we have been forced to turn it into a "feature", by
documenting it here.

Example:
got_unread := Pos("Unread", line) <> -1;

Odyssey Script Commands
Priority
PROC Priority(enable:Flag);

Odyssey provides two commands KeyPressed() and RdKey() which respectively test the occurrence of a
key press, and read a key from the keyboard. However there is a problem with this in that scripts normally
run in the background, and any keys pressed are seen first by the terminal process and either transmitted
to the remote host or used to invoke a function (menus etc.).

You can prevent this by calling Priority(TRUE), which temporarily makes execution of the script the major
priority, and so the script gets first look at the keyboard, allowing KeyPressed() and RdKey() to function
correctly. However, do remember to call Priority(FALSE) when you no longer need access to the
keyboard.

Odyssey will revert to the terminal process if the script execution is suspended for any reason - this
happens while WaitFor(), or Delay() etc. calls are executed, and when RdKey() is called. The script still
has priority however, so when these calls complete the script will take over again, and will continue to do
so until you call Priority(FALSE).

Examples:
Priority(TRUE);
Priority(FALSE);

Odyssey Script Commands
SetTimer,TimerExpired
PROC SetTimer(seconds:Number);
FUNC TimerExpired():Flag;

Scripts have access to a software timer, and these commands allow you to make use of this feature.
SetTimer() allows a script to start the timer, which will expire in "seconds" seconds. You can test
elsewhere in the script whether the time period has expired using a call to TimerExpired().

TimerExpired() is a function, and returns TRUE if the timer has expired, or FALSE if it has not.

Example:
SetTimer(10); -- expire in ten seconds
(* do something here *)
IF TimerExpired() THEN

....

Odyssey Script Commands
SilentMode
PROC SilentMode(enable:Flag);

In the Windows version of Odyssey, calling SilentMode(TRUE) causes Odyssey to minimize the Terminal
Window - this might be used by scripts which wish to hide away the messy details of the interaction with
the host, ie. to avoid confusing novice users. SilentMode(FALSE) restores the terminal window.

Examples:
SilentMode(TRUE);
....
SilentMode(FALSE);

Odyssey Script Commands
StrEdit
FUNC StrEdit(VAR s:String [, NoEcho]):Flag;

This command gives a script access to the string edit routine used internally by Odyssey for text input.
The string "s" must be assigned an initial value before the function is called. The second parameter is
optional, and controls whether Odyssey will echo characters or not. The function returns FALSE if the
user cancelled the text dialog, TRUE if not. If TRUE, then "s" will contain the modified string.

Example:
IF StrEdit(s) THEN...
StrEdit(s,NoEcho);

Odyssey Script Commands
SubStr
FUNC SubStr(s:String; start,length:Number):String;

This function allows a script to extract substrings from original strings. The function returns that part of the
string starting at character position "start" for "length" characters. If length is more than the number of
characters in the string following the starting position then SubStr will copy all available characters from
the start position onwards. Remember that character positions in strings start from zero, not one.

Example:
s := SubStr(line,0,5);

Odyssey Script Commands
ToLower,ToUpper
FUNC ToLower(s:String):String;
FUNC ToUpper(s:String):String;

These functions convert strings between all lower case, and all caps. The converted string is returned as
the function result.

Example:
lower := ToLower("UPPER");

